Synthesis of an innovative SF/NZVI catalyst and investigation of its effectiveness on bio-oil production in liquefaction process alongside other parameters

dc.authorscopusid58951057100
dc.authorscopusid9237278000
dc.authorscopusid57195542444
dc.authorscopusid56213876500
dc.contributor.authorErsöz K.
dc.contributor.authorBayrak B.
dc.contributor.authorGündüz F.
dc.contributor.authorKaraca H.
dc.date.accessioned2024-08-04T19:59:35Z
dc.date.available2024-08-04T19:59:35Z
dc.date.issued2024
dc.departmentİnönü Üniversitesien_US
dc.description.abstractToday, new energy sources alternative to fossil fuels are needed to meet the increasing energy demand. It is becoming increasingly important to constitute new energy sources from waste biomass through the liquefaction process. In this study, walnut shells (WS) were liquefied catalytically and non-catalytically under different parameters using the liquefaction method. In this process, the effect of silica fume/nano zero-valent iron (SF/NZVI) catalysts on the conversion rates was investigated. The catalyst was synthesized by reducing NZVI using a liquid phase chemical reduction method on SF. The SF/NZVI catalyst was characterized by scanning electron microscopy- energy dispersive X-ray (SEM–EDX), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. The effect of various process parameters on the liquefaction process was investigated. In this context, the reaction temperature ranged from 300 to 400 °C, the solid/solvent ratio ranged from 1/1 to 1/3, the reaction time ranged from 30 to 90 min, and the catalyst concentration ranged from 1 to 6%. According to the results obtained, the most suitable operating conditions for non-catalytic experiments in liquefaction of WS were found to be temperature of 400 °C, reaction time of 60 min, and solid/solvent of 1/3. In catalytic conditions, the optimum values were obtained as temperature of 375 °C, reaction time of 60 min, solid/solvent ratio of 1/3, and catalyst concentration of 6%. The highest total conversion and (oil + gas) % conversion were 90.4% and 46.7% under non-catalytic conditions and 90.7% and 62.3% under catalytic conditions, respectively. Gas chromatography/mass spectrometry (GC/MS) analysis revealed the bio-oil was mainly composed of aromatic compounds (benzene, butyl-, indane and their derivatives,) and polyaromatic compounds (naphthalene, decahydro-, cis-, naphthalene, 1-methyl-.). The aim of increasing the quantity and quality of the light liquid product in the study has been achieved. © The Author(s) 2024.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK; Atatürk Üniversitesi: FYL-2022–11138; Atatürk Üniversitesien_US
dc.description.sponsorshipOpen access funding provided by the Scientific and Technological Research Council of Türkiye (TÜBİTAK). This research was supported by the Atatürk University Scientific Research Projects Coordination Unit with project number FYL-2022–11138 in Turkey.en_US
dc.identifier.doi10.1007/s11356-024-32981-z
dc.identifier.endpage27934en_US
dc.identifier.issn0944-1344
dc.identifier.issue19en_US
dc.identifier.pmid38523213en_US
dc.identifier.scopus2-s2.0-85188446062en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage27913en_US
dc.identifier.urihttps://doi.org/10.1007/s11356-024-32981-z
dc.identifier.urihttps://hdl.handle.net/11616/90739
dc.identifier.volume31en_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofEnvironmental Science and Pollution Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDirect liquefactionen_US
dc.subjectNano zero-valent ironen_US
dc.subjectOil yielden_US
dc.subjectSilica fumeen_US
dc.subjectTotal conversionen_US
dc.subjectWalnut shellsen_US
dc.titleSynthesis of an innovative SF/NZVI catalyst and investigation of its effectiveness on bio-oil production in liquefaction process alongside other parametersen_US
dc.typeArticleen_US

Dosyalar