Spiral transitions

dc.authoridSahin, Bayram/0000-0002-9372-1151
dc.authoridHabib, Zulfiqar/0000-0001-9758-9162
dc.authorwosidSahin, Bayram/AAG-7872-2021
dc.authorwosidHabib, Zulfiqar/B-6355-2013
dc.contributor.authorLevent, Akin
dc.contributor.authorSahin, Bayram
dc.contributor.authorHabib, Zulfiqar
dc.date.accessioned2024-08-04T20:45:41Z
dc.date.available2024-08-04T20:45:41Z
dc.date.issued2018
dc.departmentİnönü Üniversitesien_US
dc.description.abstractSpiral curves are free from singularities and curvature extrema. These are used in path smoothing applications to overcome the abrupt change in curvature and super-elevation of moving object that occurs between tangent and circular curve. Line to circle spiral transition is made of straight line segment and curvature continuous spiral curve. It is extendible to other important types of transitions like line to line and circle to circle. Although the problem of line to circle transition has been addressed by many researchers, there is no comprehensive literature review available. This paper presents state-of-the-art of line to circle spiral transition, applications in different fields, limitations of existing approaches, and recommendations to meet the challenges of compatibility with today's CAD/CAM soft wares, satisfaction of Hermite end conditions, approximation of discrete data for image processing, 3D path smoothness for an unmanned aerial vehicle (UAV), and arc-length parametrization. Whole discussion is concluded with future research directions in various areas of applications.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) under the Visiting Scientist Programme; PDE-GIR project from the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant [778035]en_US
dc.description.sponsorshipThis research is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the Visiting Scientist Programme; and PDE-GIR project which has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No 778035.en_US
dc.identifier.doi10.1007/s11766-018-3554-4
dc.identifier.endpage490en_US
dc.identifier.issn1005-1031
dc.identifier.issn1993-0445
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85059879565en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage468en_US
dc.identifier.urihttps://doi.org/10.1007/s11766-018-3554-4
dc.identifier.urihttps://hdl.handle.net/11616/98608
dc.identifier.volume33en_US
dc.identifier.wosWOS:000455448500006en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherZhejiang Univ, Editorial Committee Applied Mathematicsen_US
dc.relation.ispartofApplied Mathematics-A Journal of Chinese Universities Series Ben_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectpath planningen_US
dc.subjectspiralen_US
dc.subjectcontinuityen_US
dc.subjectcurvature extremaen_US
dc.subjectline to circle transitionen_US
dc.titleSpiral transitionsen_US
dc.typeArticleen_US

Dosyalar