High Voltage Ga-Doped P2-Type Na2/3Ni0.2Mn0.8O2 Cathode for Sodium-Ion Batteries

dc.authorscopusid57218765508
dc.authorscopusid57220077199
dc.authorscopusid56256502300
dc.authorscopusid57201214280
dc.authorscopusid22933352000
dc.authorscopusid55649082200
dc.authorscopusid55006254500
dc.contributor.authorLiu H.
dc.contributor.authorHong N.
dc.contributor.authorBugday N.
dc.contributor.authorYasar S.
dc.contributor.authorAltin S.
dc.contributor.authorDeng W.
dc.contributor.authorDeng W.
dc.date.accessioned2024-08-04T20:02:32Z
dc.date.available2024-08-04T20:02:32Z
dc.date.issued2024
dc.departmentİnönü Üniversitesien_US
dc.description.abstractNi/Mn-based oxide cathode materials have drawn great attention due to their high discharge voltage and large capacity, but structural instability at high potential causes rapid capacity decay. How to moderate the capacity loss while maintaining the advantages of high discharge voltage remains challenging. Herein, the replacement of Mn ions by Ga ions is proposed in the P2-Na2/3Ni0.2Mn0.8O2 cathode for improving their cycling performances without sacrificing the high discharge voltage. With the introduction of Ga ions, the relative movement between the transition metal ions is restricted and more Na ions are retained in the lattice at high voltage, leading to an enhanced redox activity of Ni ions, validated by ex situ synchrotron X-ray absorption spectrum and X-ray photoelectron spectroscopy. Additionally, the P2-O2 phase transition is replaced by a P2-OP4 phase transition with a smaller volume change, reducing the lattice strain in the c-axis direction, as detected by operando/ex situ X-ray diffraction. Consequently, the Na2/3Ni0.21Mn0.74Ga0.05O2 electrode exhibits a high discharge voltage close to that of the undoped materials, while increasing voltage retention from 79% to 93% after 50 cycles. This work offers a new avenue for designing high-energy density Ni/Mn-based oxide cathodes for sodium-ion batteries. © 2023 Wiley-VCH GmbH.en_US
dc.description.sponsorship2Y037; National Natural Science Foundation of China, NSFC: 52002037, 52261135632, U21A20284; National Natural Science Foundation of China, NSFC; Central South University, CSU: 2020CX007; Central South University, CSU; Guizhou Provincial Science and Technology Department; Science and Technology Program of Hunan Province: 2020RC4005,2019RS1004; Science and Technology Program of Hunan Provinceen_US
dc.description.sponsorshipThis work was financially supported by the Science and Technology Foundation of Guizhou Province (QKHZC[2020]2Y037), the Science and Technology Innovation Program of Hunan Province (2020RC4005,2019RS1004), National Natural Science Foundation of China (U21A20284, 52002037, 52261135632), and the Innovation Mover Program of Central South University (2020CX007). Moreover, the authors thank the BL11B and BL14B1 stations at SSRF and beamlines MCD?A and MCD?B (Soochow beamline for energy materials) at NSRL for XAS measurements.en_US
dc.identifier.doi10.1002/smll.202307225
dc.identifier.issn1613-6810
dc.identifier.issue17en_US
dc.identifier.scopus2-s2.0-85178960566en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1002/smll.202307225
dc.identifier.urihttps://hdl.handle.net/11616/91754
dc.identifier.volume20en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.relation.ispartofSmallen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGa-dopeden_US
dc.subjecthigh-voltage cathodesen_US
dc.subjectlayered oxide cathodesen_US
dc.subjectphase transitionen_US
dc.subjectsodium-ion batteriesen_US
dc.titleHigh Voltage Ga-Doped P2-Type Na2/3Ni0.2Mn0.8O2 Cathode for Sodium-Ion Batteriesen_US
dc.typeArticleen_US

Dosyalar