A new perspective for the numerical solutions of the cmKdV equation via modified cubic B-spline differential quadrature method

dc.authoridUÇAR, Yusuf/0000-0003-1469-5002
dc.authoridEsen, Alaattin/0000-0002-7927-5941
dc.authoridKarakoc, Seydi Battal Gazi/0000-0002-2348-4170
dc.authoridYAĞMURLU, Nuri Murat/0000-0003-1593-0254
dc.authoridBaşhan, Ali/0000-0001-8500-493X
dc.authorwosidUÇAR, Yusuf/ABG-8562-2020
dc.authorwosidEsen, Alaattin/ABE-5694-2021
dc.authorwosidKarakoc, Seydi Battal Gazi/AFB-6984-2022
dc.authorwosidYAĞMURLU, Nuri Murat/AAB-8514-2020
dc.authorwosidBaşhan, Ali/R-6644-2018
dc.contributor.authorBashan, Ali
dc.contributor.authorYagmurlu, N. Murat
dc.contributor.authorUcar, Yusuf
dc.contributor.authorEsen, Alaattin
dc.date.accessioned2024-08-04T20:44:34Z
dc.date.available2024-08-04T20:44:34Z
dc.date.issued2018
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn the present paper, a novel perspective fundamentally focused on the differential quadrature method using modifi ed cubic B-spline basis functions are going to be applied for obtaining the numerical solutions of the complex modified Korteweg-de Vries (cmKdV) equation. In order to test the effectiveness and effciency of the present approach, three test problems, that is single solitary wave, interaction of two solitary waves and interaction of three solitary waves will be handled. Furthermore, the maximum error norm L-infinity will be calculated for single solitary wave solutions to measure the effciency and the accuracy of the present approach. Meanwhile, the three lowest conservation quantities will be calculated and also used to test the effciency of the method. In addition to these test tools, relative changes of the invariants will be calculated and presented. In the end of these processes, those newly obtained numerical results will be compared with those of some of the published papers. As a conclusion, it can be said that the present approach is an effective and effcient one for solving the cmKdV equation and can also be used for numerical solutions of other problems.en_US
dc.identifier.doi10.1142/S0129183118500432
dc.identifier.issn0129-1831
dc.identifier.issn1793-6586
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85048061926en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.urihttps://doi.org/10.1142/S0129183118500432
dc.identifier.urihttps://hdl.handle.net/11616/98319
dc.identifier.volume29en_US
dc.identifier.wosWOS:000437316200005en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofInternational Journal of Modern Physics Cen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPartial diffferential equationsen_US
dc.subjectdifferential quadrature methoden_US
dc.subjectcmKdV equationen_US
dc.subjectsolitary wavesen_US
dc.subjectmodified cubic B-splines.en_US
dc.titleA new perspective for the numerical solutions of the cmKdV equation via modified cubic B-spline differential quadrature methoden_US
dc.typeArticleen_US

Dosyalar