Preparation of poly(acrylamide-co-2-acrylamido-2-methylpropan sulfonic acid)-g-Carboxymethyl cellulose/Titanium dioxide hydrogels and modeling of their swelling capacity and mechanic strength behaviors by response surface method technique

dc.authoridERDOGAN, AHMET/0000-0001-8349-0006
dc.authoridSARICI, TALHA/0000-0001-8488-5851
dc.authoridDAŞKIN, Mahmut/0000-0001-7777-1821
dc.authoridBoztepe, Cihangir/0000-0001-5019-2010
dc.authorwosidERDOGAN, AHMET/AAT-4506-2021
dc.authorwosidSARICI, TALHA/ABG-8638-2020
dc.authorwosidDAŞKIN, Mahmut/AAT-4529-2021
dc.contributor.authorBoztepe, Cihangir
dc.contributor.authorDaskin, Mahmut
dc.contributor.authorErdogan, Ahmet
dc.contributor.authorSarici, Talha
dc.date.accessioned2024-08-04T20:50:18Z
dc.date.available2024-08-04T20:50:18Z
dc.date.issued2021
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIt is very important that new generation, unique, high mechanical strength, and biocompatible hydrogel composites are developed due to their potential to be used as biomaterials in the biomedical field. Modeling of the swelling capacity and mechanical strength behavior of hydrogels is a domain of steadily increasing academic and industrial importance. These behaviors are difficult to model accurately due to hydrogels show very complex behavior depending on the content. In this study, a series of poly(acrylamide-co-2-acrylamido-2-methylpropan sulfonic acid)-g-carboxymethyl cellulose/TiO2 (poly(AAm-co-AMPS)-g-CMC/TiO2) superabsorbent hydrogel composites were prepared by free-radical graft copolymerization in aqueous solution. Structural and surface morphology characterizations were conducted by using Fourier-transform infrared spectroscopy and scanning electron microscope analysis techniques. For modeling the equilibrium swelling capacity and fracture strength behaviors of hydrogels, the composition parameters (such as mole ratio of AMPS/AAm, wt% of CMC, and wt% of TiO2) was proposed by response surface method (RSM) Design Expert-10 software. Statistical parameters showed that the RSM model has good performance in modeling the swelling capacity and mechanic fracture strength behaviors of poly(AAm-co-AMPS)-g-CMC/TiO2 hydrogel composites. According to the RSM model results, the maximum swelling capacity and fracture strength values were calculated as 270.39 g water/g polymer and 159.23 kPa, respectively.en_US
dc.identifier.doi10.1002/pen.25736
dc.identifier.endpage2096en_US
dc.identifier.issn0032-3888
dc.identifier.issn1548-2634
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-85107587415en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage2083en_US
dc.identifier.urihttps://doi.org/10.1002/pen.25736
dc.identifier.urihttps://hdl.handle.net/11616/99978
dc.identifier.volume61en_US
dc.identifier.wosWOS:000658834300001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofPolymer Engineering and Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbiomedical hydrogelen_US
dc.subjectmechanic strengthen_US
dc.subjectmodelingen_US
dc.subjectRSMen_US
dc.subjectswellingen_US
dc.titlePreparation of poly(acrylamide-co-2-acrylamido-2-methylpropan sulfonic acid)-g-Carboxymethyl cellulose/Titanium dioxide hydrogels and modeling of their swelling capacity and mechanic strength behaviors by response surface method techniqueen_US
dc.typeArticleen_US

Dosyalar