Web based image processing application: Rating diabetes intensity
dc.authorscopusid | 57200138310 | |
dc.authorscopusid | 35732416100 | |
dc.authorscopusid | 8294895600 | |
dc.authorscopusid | 57198503209 | |
dc.authorscopusid | 55807973900 | |
dc.contributor.author | Gündüzalp V. | |
dc.contributor.author | Talu M.F. | |
dc.contributor.author | Gül S. | |
dc.contributor.author | Zayman E. | |
dc.contributor.author | Gül M. | |
dc.date.accessioned | 2024-08-04T20:03:56Z | |
dc.date.available | 2024-08-04T20:03:56Z | |
dc.date.issued | 2017 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description | 2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017 -- 16 September 2017 through 17 September 2017 -- 115012 | en_US |
dc.description.abstract | In this study, it is A web-based image processing software which has been introduced to process Immunohistochemical images obtaining in experimentally induced diabetic rats and rank the severity of diabetes between the groups. With the software, specialist physicians can upload Images obtaining in rat groups to the system via web on own account, obtain average color intensity and intensity graphs of groups after Determining the basic colors to be evaluated. The software eliminating the subjective evaluation contains mainly three phases in this study, Evaluation of each image content according to basic axes(Three-dimensional projection), Clustering of colors (Expectation maximization method) and Color-axis determination (Calculation of eigenvectors). As a result of, it can be considered that positive results obtained could stimulate Researchers to generalize of the proposed method. © 2017 IEEE. | en_US |
dc.identifier.doi | 10.1109/IDAP.2017.8090277 | |
dc.identifier.isbn | 9781538618806 | |
dc.identifier.scopus | 2-s2.0-85039915976 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://doi.org/10.1109/IDAP.2017.8090277 | |
dc.identifier.uri | https://hdl.handle.net/11616/92228 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | IDAP 2017 - International Artificial Intelligence and Data Processing Symposium | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Condensation | en_US |
dc.subject | Diabetes | en_US |
dc.subject | Expectation maximization | en_US |
dc.subject | Image analysis | en_US |
dc.subject | Immunohistochemical | en_US |
dc.title | Web based image processing application: Rating diabetes intensity | en_US |
dc.title.alternative | Web tabanli bir görüntü işleme uygulamasi: Diyabet şiddetini derecelendirme | en_US |
dc.type | Conference Object | en_US |