A new perspective for the numerical solution of the Modified Equal Width wave equation

dc.authoridEsen, Alaattin/0000-0002-7927-5941
dc.authoridUÇAR, Yusuf/0000-0003-1469-5002
dc.authoridYAĞMURLU, Nuri Murat/0000-0003-1593-0254
dc.authoridBashan, Ali/0000-0001-8500-493X
dc.authorwosidEsen, Alaattin/ABE-5694-2021
dc.authorwosidUÇAR, Yusuf/ABG-8562-2020
dc.authorwosidYAĞMURLU, Nuri Murat/AAB-8514-2020
dc.authorwosidBashan, Ali/R-6644-2018
dc.contributor.authorBashan, Ali
dc.contributor.authorYagmurlu, Nuri Murat
dc.contributor.authorUcar, Yusuf
dc.contributor.authorEsen, Alaattin
dc.date.accessioned2024-08-04T20:49:26Z
dc.date.available2024-08-04T20:49:26Z
dc.date.issued2021
dc.departmentİnönü Üniversitesien_US
dc.description.abstractFinding the approximate solutions to natural systems in the branch of mathematical modelling has become increasingly important and for this end various methods have been proposed. The purpose of the present paper is to obtain and analyze the numerical solutions of Modified Equal Width equation (MEW). This equation is one of those equations used to model nonlinear phenomena which has a significant role in several branches of science such as plasma physics, fluid mechanics, optics and kinetics. Firstly, for the discretization of spatial derivatives, a fifth-order quantic B-spline based scheme is directly implemented. Secondly, a forward finite difference formula is applied for the temporal discretization of derivatives with respect to time. Simulation results establish the validity and applicability of the suggested technique for a wide range of nonlinear equations. Then, the newly obtained theoretical consequences are numerically justified by the simulations and test problems. These illustrative test problems are presented verifying the superiority of the newly presented scheme compared to other existing schemes and techniques. The suggested method with symbolic computational software such as, Matlab, is proven as an effective way to obtain the soliton solutions of several nonlinear partial differential equations (PDEs). Finally, the newly obtained results are presented graphically to justify the approximate findings.en_US
dc.identifier.doi10.1002/mma.7322
dc.identifier.endpage8939en_US
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-85103246433en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage8925en_US
dc.identifier.urihttps://doi.org/10.1002/mma.7322
dc.identifier.urihttps://hdl.handle.net/11616/99856
dc.identifier.volume44en_US
dc.identifier.wosWOS:000634528500001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofMathematical Methods in The Applied Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectconvergenceen_US
dc.subjectdifferential quadrature methoden_US
dc.subjectFinite difference methoden_US
dc.subjectquintic B? splinesen_US
dc.subjectsolitary waveen_US
dc.titleA new perspective for the numerical solution of the Modified Equal Width wave equationen_US
dc.typeArticleen_US

Dosyalar