SLASSO: a scaled LASSO for multicollinear situations

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Taylor & Francis Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

We propose a re-scaled LASSO by pre-multiplying the LASSO with a matrix term, namely, scaled LASSO (SLASSO), for multicollinear situations. Our numerical study has shown that the SLASSO is comparable with other sparse modeling techniques and often outperforms the LASSO and elastic net. Our findings open new visions about using the LASSO still for sparse modeling and variable selection. We conclude our study by pointing that the same efficient algorithm can solve the SLASSO for solving the LASSO and suggest following the same construction technique for other penalized estimators

Açıklama

Anahtar Kelimeler

Biasing parameter, L-1-penalty, LASSO, Liu estimation, Multicollinearity, variable selection

Kaynak

Journal of Statistical Computation and Simulation

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

91

Sayı

15

Künye