Gas sensing through evanescent coupling of spoof surface acoustic waves

dc.authoridCicek, Ahmet/0000-0002-7686-0045
dc.authoridKorozlu, Nurettin/0000-0002-0899-0227
dc.authorwosidCicek, Ahmet/D-5990-2012
dc.authorwosidKAYA, Olgun Adem/ABH-6274-2020
dc.authorwosidArslan, Yasin/KJL-4344-2024
dc.authorwosidKorozlu, Nurettin/H-6346-2016
dc.contributor.authorCicek, Ahmet
dc.contributor.authorArslan, Yasin
dc.contributor.authorTrak, Digdem
dc.contributor.authorOkay, Fatih Can
dc.contributor.authorKaya, Olgun Adem
dc.contributor.authorKorozlu, Nurettin
dc.contributor.authorUlug, Bulent
dc.date.accessioned2024-08-04T20:45:45Z
dc.date.available2024-08-04T20:45:45Z
dc.date.issued2019
dc.departmentİnönü Üniversitesien_US
dc.description.abstractAn ultrasonic gas sensor based on evanescent coupling of spoof surface acoustic waves between two surface phononic crystals containing trapezoidal grooves on rigid slabs is theoretically and experimentally demonstrated. Sensing properties for carbon dioxide in dry air at 25 degrees C and 760 Torr are investigated as an example. Band structure analyses reveal two spoof surface acoustic wave bands with opposite parities when the separation of surface phononic crystals is 1.5 times the periodicity of grooves. The beat length varies with frequency and carbon dioxide volume fraction, where the increase of the latter results in red shift of a sharp intense output peak at 59.69 kHz at a rate of 17.70 mHz/ppm and 16.20 mHz/ppm for carbon dioxide volume fractions up to 10,000 ppm, as measured through Finite-Element Method simulations and experiments, respectively. Gas sensing can also be achieved by measuring the output acoustic intensity at constant frequency, which exhibits a steep decrease with carbon dioxide volume fraction up to 2000 ppm.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [116F085]en_US
dc.description.sponsorshipThis work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under the grant number 116F085.en_US
dc.identifier.doi10.1016/j.snb.2019.02.119
dc.identifier.endpage265en_US
dc.identifier.issn0925-4005
dc.identifier.scopus2-s2.0-85062424232en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage259en_US
dc.identifier.urihttps://doi.org/10.1016/j.snb.2019.02.119
dc.identifier.urihttps://hdl.handle.net/11616/98674
dc.identifier.volume288en_US
dc.identifier.wosWOS:000462468000034en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Saen_US
dc.relation.ispartofSensors and Actuators B-Chemicalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSpoof surface acoustic waveen_US
dc.subjectPhononic crystalen_US
dc.subjectEvanescent couplingen_US
dc.subjectGas sensingen_US
dc.titleGas sensing through evanescent coupling of spoof surface acoustic wavesen_US
dc.typeArticleen_US

Dosyalar