Preparation of Sn doped nanometric TiO2 powders by reflux and hydrothermal syntheses and their characterization

dc.authoridKiraz, Nadir/0000-0002-6858-2946
dc.authoridkesmez, ömer/0000-0003-0107-8558
dc.authoridCamurlu, Hasan Erdem/0000-0003-3170-4492
dc.authoridAkarsu, Esin/0000-0002-1965-5774
dc.authorwosidKiraz, Nadir/C-1687-2016
dc.authorwosidAsilturk, Meltem/B-2989-2013
dc.authorwosidkesmez, ömer/I-7153-2017
dc.authorwosidArpac, Ertugrul/C-5471-2016
dc.authorwosidCamurlu, Hasan Erdem/C-2534-2016
dc.authorwosidAkarsu, Esin/C-5410-2016
dc.contributor.authorKiraz, Nadir
dc.contributor.authorBurunkaya, Esin
dc.contributor.authorKesmez, Omer
dc.contributor.authorCamurlu, Hasan Erdem
dc.contributor.authorAsilturk, Meltem
dc.contributor.authorYesil, Zerin
dc.contributor.authorArpac, Ertugrul
dc.date.accessioned2024-08-04T20:35:32Z
dc.date.available2024-08-04T20:35:32Z
dc.date.issued2011
dc.departmentİnönü Üniversitesien_US
dc.description.abstractHydrothermal and reflux synthesis methods were utilized for the preparation of 5% Sn doped TiO2 nanopowders. Obtained powders were subjected to particle size and specific surface area measurements, flame atomic absorption spectroscopy, X-ray diffraction analyses and transmission electron microscopy examination. TiO2 powder prepared by hydrothermal synthesis presented a bimodal particle size distribution with average particle sizes of about 3 and 10 nm, whereas TiO2 powder synthesized by reflux method had an average particle size of 7 nm. Specific surface areas of hydrothermal and reflux synthesized TiO2 were 130 and 115 m(2)/g, respectively. Sn doping in TiO2 was 95.8% in hydrothermal and 86.4% in reflux synthesis as measured by FAAS, respectively. Photocatalytic activities of the obtained TiO2 powders were evaluated by decomposition of malachite green solution in a solar box. Photocatalytic activity of hydrothermally synthesized TiO2 was fairly higher in visible light and slightly higher in UV light than the activity of reflux synthesized TiO2.en_US
dc.description.sponsorshipAkdeniz University; T.R. Prime Ministry State Planning Organization [2005 DPT.120.150]; NANOenen_US
dc.description.sponsorshipAuthors would like to thank Akdeniz University Research Fund for financial support. Technical and financial support of T.R. Prime Ministry State Planning Organization (Project number: 2005 DPT.120.150) and NANOen are gratefully acknowledged.en_US
dc.identifier.doi10.1007/s10971-011-2515-7
dc.identifier.endpage386en_US
dc.identifier.issn0928-0707
dc.identifier.issn1573-4846
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-80051552564en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage381en_US
dc.identifier.urihttps://doi.org/10.1007/s10971-011-2515-7
dc.identifier.urihttps://hdl.handle.net/11616/95404
dc.identifier.volume59en_US
dc.identifier.wosWOS:000293639400025en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Sol-Gel Science and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNano particleen_US
dc.subjectTiO2en_US
dc.subjectPhotocatalysisen_US
dc.subjectHydrothermal synthesisen_US
dc.subjectReflux synthesisen_US
dc.titlePreparation of Sn doped nanometric TiO2 powders by reflux and hydrothermal syntheses and their characterizationen_US
dc.typeArticleen_US

Dosyalar