On the Algebra of Interval Vectors

dc.contributor.authorYılmaz, Yılmaz
dc.contributor.authorLevent, Halise
dc.contributor.authorBozkurt, Hacer
dc.date.accessioned2024-08-04T19:53:15Z
dc.date.available2024-08-04T19:53:15Z
dc.date.issued2023
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn this study, we examine some important subspaces by showing that the set of n-dimensional interval vectors is a quasilinear space. By defining the concept of dimensions in these spaces, we show that the set of $n$-dimensional interval vectors is actually a $(n_{r},n_{s})$-dimensional quasilinear space and any quasilinear space is $left( n_{r},0_{s}right) $-dimensional if and only if it is $n$-dimensional linear space. We also give examples of $(2_{r},0_{s})$ and $(0_{r},2_{s})$-dimensional subspaces. We define the concept of dimension in a quasilinear space with natural number pairs. Further, we define an inner product on some spaces and talk about them as inner product quasilinear spaces. Further, we show that some of them have Hilbert quasilinear space structure.en_US
dc.identifier.doi10.36753/mathenot.1117985
dc.identifier.endpage79en_US
dc.identifier.issn2147-6268
dc.identifier.issue2en_US
dc.identifier.startpage67en_US
dc.identifier.trdizinid1186814en_US
dc.identifier.urihttps://doi.org/10.36753/mathenot.1117985
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1186814
dc.identifier.urihttps://hdl.handle.net/11616/89589
dc.identifier.volume11en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofMathematical Sciences and Applications E-Notesen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleOn the Algebra of Interval Vectorsen_US
dc.typeArticleen_US

Dosyalar