Zaman içeren problemlerin çözümüne bir nümerik yaklaşım

dc.contributor.authorBaşer Güven, Şulehan
dc.date.accessioned2019-05-09T10:36:09Z
dc.date.available2019-05-09T10:36:09Z
dc.date.issued2005
dc.departmentEnstitüler, Sosyal Bilimler Enstitüsü,en_US
dc.description.abstractÖZET Yüksek Lisans Tezi =$0$1ød(5(1352%/(0/(5ø1dg=h0h1( %ø51h0(5ø.<$./$ù,0 ùXOHKDQ%$ù(5*h9(1 øQ|Q hQLYHUVLWHVL)HQ%LOLPOHUL(QVWLW V 0DWHPDWLN$QDELOLP'DOà 46+vii sayfa 2005 'DQà úPDQ'Ro'U$OLg]GHú Birinci bölümde sonraki bölümlerde %X oDOà úPD EHú E|O PGHQ ROXúPDNWDGà U NXOODQà OPà úRODQED]à WHPHONDYUDPYH\|QWHPOHUH\HUYHULOGL bölümde diffusion-FRQYHFWLRQGHQNOHPLWDQà Wà OGà veGHQNOHPLQELU\DUà DQDOLWLN øNLQFL çözümü olan piecewise analitik çözümü verildi. Diffusion-convection denkleminin piecewise çözümü ile DQDOLWLNo|] PNDUúà ODúWà Uà OPDODUà WDEORODUKDOLQGHVXQXOGX Üçüncü bölümde MOL yöntemiyle diskrize edilen diffusion-convection denklemi Euler ve Runge-Kutta yöntemleri ile çözüldü. Diffusion-convection denkleminin nümerik ve analitik çözümNDUúà ODúWà Uà OPDODUà WDEORODUKDOLQGHVXQXOGX Dördüncü bölümde Euler ve Runge-Kutta yöntemleri içLQNDUDUOà Oà NDQDOL]L\DSà OGà %HúLQFL E|O PGH oDOà úPDPà ]GD NXOODQà ODQ \|QWHPOHUGHQ HOGH HGLOHQ VRQXoODU GH÷HUOHQGLULOGL : Diffusion-convection denklemi, MOL yöntemi, Euler yöntemi, $1$+7$5.(/ø0(LER Runge-Kutta yöntemi, Piecewise analitik yöntem ien_US
dc.description.abstractABSTRACT Master Thesis A NUMERICAL APPROACH TO PROBLEMS INCLUDING TIME ùXOHKDQ%$ù(5*h9(1 Inonu University Institute of Natural and Applied Sciences Mathematics Department 46+vii pages 2005 Supervisor: Assoc. Prof. 'U$OLg]GHú This study consists of five chapters. Chapter 1 includes some basic concepts and methods which were used in the latter chapters. In chapter 2, diffusion-convection equation was introduced and piecewise analytical method which is the half-analytical solution of this equation was given. The comparison of piecewise analytical solution and analytical solution of diffusion-convection equation were presented in the tables. In chapter 3, diffusion-convection equation which we obtained by discreazing with MOL method was solved with Euler and Runge-Kutta methods. The comparison of numerical and analytical solution of diffusion-convection equation were presented in the tables. In chapter 4, stability analysis for Euler and Runge-Kutta methods was made. In chapter 5, the results obtained by the methods used in this study were evaluated. KEYWORDS: Diffusion-convection equation, The method of lines (MOL), Euler method, Runge-Kutta method, Piecewise analytical method ien_US
dc.identifier.citationBaşer Güven, Ş. (2005). Zaman içeren problemlerin çözümüne bir nümerik yaklaşım . Yayımlanmış Yüksek lisans Tezi, İnönü Üniversitesi, Malatyaen_US
dc.identifier.endpage53en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/11616/10513
dc.language.isotren_US
dc.publisherİnönü Üniversitesien_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatematiken_US
dc.subjectMathematicsen_US
dc.titleZaman içeren problemlerin çözümüne bir nümerik yaklaşımen_US
dc.title.alternativeA numerical approach to problems including timeen_US
dc.typeMaster Thesisen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
196890.pdf
Boyut:
635.52 KB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: