Numerical solutions of the equal width equation by trigonometric cubic B-spline collocation method based on Rubin-Graves type linearization
dc.authorid | YAĞMURLU, Nuri Murat/0000-0003-1593-0254 | |
dc.authorid | Karakaş, Ali Sercan/0000-0001-8622-1127 | |
dc.authorwosid | YAĞMURLU, Nuri Murat/AAB-8514-2020 | |
dc.authorwosid | Karakaş, Ali Sercan/JNT-0053-2023 | |
dc.contributor.author | Yagmurlu, Nuri Murat | |
dc.contributor.author | Karakas, Ali Sercan | |
dc.date.accessioned | 2024-08-04T20:47:22Z | |
dc.date.available | 2024-08-04T20:47:22Z | |
dc.date.issued | 2020 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | In this article, the equal width (EW) equation is going to be solved numerically. In order to show the accuracy of the presented method, six test problems namely single solitary wave, interaction of two solitary waves, interaction of three solitary waves, Maxwellian initial condition, undular bore, and soliton collision are going to be solved. For the first test problem, since it has exact solution, the error norms L-2 and L-infinity are going to be calculated and compared with some of the earlier studies existing in the literature. Moreover, the three invariants I-1, I-2, and I-3 of the given problems during the simulations are calculated and tabulated. Besides those comparisons, the relative changes of the invariants are given. Finally, a comparison of those error norms and invariants has clearly shown that the present approach obtained compatible and better results than most of the earlier works by using the same parameters. | en_US |
dc.identifier.doi | 10.1002/num.22470 | |
dc.identifier.endpage | 1183 | en_US |
dc.identifier.issn | 0749-159X | |
dc.identifier.issn | 1098-2426 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85085066218 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 1170 | en_US |
dc.identifier.uri | https://doi.org/10.1002/num.22470 | |
dc.identifier.uri | https://hdl.handle.net/11616/99299 | |
dc.identifier.volume | 36 | en_US |
dc.identifier.wos | WOS:000530146700001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | Numerical Methods For Partial Differential Equations | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | collocation method | en_US |
dc.subject | equal width equation | en_US |
dc.subject | finite element method | en_US |
dc.subject | solitary waves | en_US |
dc.subject | trigonometric B-splines | en_US |
dc.title | Numerical solutions of the equal width equation by trigonometric cubic B-spline collocation method based on Rubin-Graves type linearization | en_US |
dc.type | Article | en_US |