Position Estimation of In-Pipe Robot Using Artificial Neural Network and Sensor Fusion

dc.contributor.authorAkkaya, Abdullah Erhan
dc.contributor.authorTalu, Muhammed Fatih
dc.contributor.authorAydoğmuş, Ömür
dc.date.accessioned2022-02-08T08:01:29Z
dc.date.available2022-02-08T08:01:29Z
dc.date.issued2021
dc.departmentİnönü Üniversitesien_US
dc.description.abstractAbstract: Automatic position detection of water leakage in water distribution pipelines is critical tominimize the loss of labour, time, money spent on exploration and excavation in pipe inspectionprocedures. Nevertheless, the main goal of detection is to prevent water loss. In this paper,accurate position detection, crack frequency band detection, and external sphere studies of anin-pipe robot prototype were presented. During the precise position estimation, classicalExtended Kalman Filter (EKF), stationary region detection, and location estimation usingEnhanced Heuristic Drift Elimination (EHDE) were performed with two different artificialneural networks (ANNs). In this way, online precise position estimation can be done onhardware with no sufficient computational power for indoor robotic studies. In addition, thesound characteristics resulting from the crack at different hole size and water pressure intensitylevels were investigated. Finally, a new sealing sphere design was devised. Three differenthydrophone sensor data were recorded on the SD card simultaneously. The results show thatthe proposed ANN method can work online and make a similar position estimation with theclassical IMU position estimation method by 99%.en_US
dc.identifier.citationAKKAYA A. E,TALU M. F,AYDOĞMUŞ Ö (2021). Position Estimation of In-Pipe Robot Using Artificial Neural Network and Sensor Fusion. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(5), 1102 - 1120. Doi: 10.16984/saufenbilder.898072en_US
dc.identifier.doi10.16984/saufenbilder.898072en_US
dc.identifier.endpage1120en_US
dc.identifier.issn1301-4048
dc.identifier.issn2147-835X
dc.identifier.issue5en_US
dc.identifier.startpage1102en_US
dc.identifier.trdizinid459802en_US
dc.identifier.urihttps://doi.org/10.16984/saufenbilder.898072
dc.identifier.urihttps://hdl.handle.net/11616/46803
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/459802
dc.identifier.volume25en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofSakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisien_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titlePosition Estimation of In-Pipe Robot Using Artificial Neural Network and Sensor Fusionen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
914c1e2f-349c-4ec3-9d76-f8287c5ccd3a.pdf
Boyut:
3.71 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: