Automated Mesiodens Detection with Deep-Learning-Based System Using Cone-Beam Computed Tomography Images
dc.authorid | Z. Abdelkarim, Ahmed/0000-0001-9525-7527 | |
dc.authorid | DUMAN, SUAYIP BURAK/0000-0003-2552-0187 | |
dc.authorid | Celik, Ozer/0000-0002-4409-3101 | |
dc.authorid | BAYRAKDAR, Ibrahim Sevki/0000-0001-5036-9867 | |
dc.authorid | Celik Ozen, Duygu/0000-0001-7274-3987 | |
dc.authorid | Orhan, Kaan/0000-0001-6768-0176 | |
dc.authorwosid | BAYRAKDAR, Ibrahim Sevki/B-2411-2015 | |
dc.contributor.author | Syed, Ali Zakir | |
dc.contributor.author | Ozen, Duygu Celik | |
dc.contributor.author | Abdelkarim, Ahmed Z. | |
dc.contributor.author | Duman, Suayip Burak | |
dc.contributor.author | Bayrakdar, Ibrahim Sevki | |
dc.contributor.author | Duman, Sacide | |
dc.contributor.author | Celik, Ozer | |
dc.date.accessioned | 2024-08-04T20:54:49Z | |
dc.date.available | 2024-08-04T20:54:49Z | |
dc.date.issued | 2023 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | The detection of mesiodens supernumerary teeth is crucial for appropriate diagnosis and treatment. The study aimed to develop a convolutional neural network (CNN)-based model to automatically detect mesiodens in cone-beam computed tomography images. A datatest of anonymized 851 axial slices of 106 patients' cone-beam images was used to process the artificial intelligence system for the detection and segmentation of mesiodens. The CNN model achieved high performance in mesiodens segmentation with sensitivity, precision, and F1 scores of 1, 0.9072, and 0.9513, respectively. The area under the curve (AUC) was 0.9147, indicating the model's robustness. The proposed model showed promising potential for the automated detection of mesiodens, providing valuable assistance to dentists in accurate diagnosis. | en_US |
dc.description.sponsorship | This work has been supported by Eskisehir Osmangazi University Scientific Research Projects Coordination Unit under Grant no. 202045E06. [202045E06]; Eskisehir Osmangazi University Scientific Research Projects Coordination Unit | en_US |
dc.description.sponsorship | This work has been supported by Eskisehir Osmangazi University Scientific Research Projects Coordination Unit under Grant no. 202045E06. | en_US |
dc.identifier.doi | 10.1155/2023/4415970 | |
dc.identifier.issn | 0884-8173 | |
dc.identifier.issn | 1098-111X | |
dc.identifier.scopus | 2-s2.0-85176281741 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1155/2023/4415970 | |
dc.identifier.uri | https://hdl.handle.net/11616/101664 | |
dc.identifier.volume | 2023 | en_US |
dc.identifier.wos | WOS:001094644700001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley-Hindawi | en_US |
dc.relation.ispartof | International Journal of Intelligent Systems | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Classification | en_US |
dc.subject | Teeth | en_US |
dc.title | Automated Mesiodens Detection with Deep-Learning-Based System Using Cone-Beam Computed Tomography Images | en_US |
dc.type | Article | en_US |