Synthesis, characterization and dielectric properties of nickel-based polyoxometalate/polyurethane composites

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Taylor & Francis Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The aim of this study was to synthesis, characterization and investigation of the influence of the polyoxometalate concentrations (1, 3, 5 and 10 wt%) on chemical, thermal, physical and morphological properties of nickel-based polyoxometalate/polyurethane composite (Ni-POM/PU) materials. Firstly, nickel-based polyoxometalate (Ni-POM) compound has been synthesized and characterized through various spectroscopic techniques. Synthesized Ni-POM compounds have been used for preparation of polyurethane composites as a reinforcement. Three different Ni-POM/PU composites containing Ni-POM were prepared by solution mixing and casting techniques. The chemical structure and morphology of prepared Ni-POWPU composite samples were confirmed by Fourier transform infrared spectroscopy (FTIR), elemental analysis and SEM techniques. Effects of Ni-POM on thermal stability, glass transition temperature, optical transparency, hydrophilicity and physical properties of polyurethane composites were examined. Thermal stabilities and glass temperatures of the materials have been checked by differential thermal analysis (DTA), thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC). The SEM results confirmed the highly porous structure and the formation of Ni-POM structures in the polymer matrix. Synthesized composites showed high chemical stability, good processability, and low Tg values. The dielectric properties of the prepared Ni-POM/polyurethane composites were also investigated at room temperature. These results displayed that the dielectric constant of the POM/polyurethane composites decreased with the increase of the Ni-POM content in polymeric matrix. [GRAPHICS] .

Açıklama

Anahtar Kelimeler

Polyurethanes, polyoxometalates, polymeric composites, thermal stability, dielectric properties

Kaynak

Polymer-Plastics Technology and Materials

WoS Q Değeri

Q4

Scopus Q Değeri

Q2

Cilt

58

Sayı

13

Künye