E-Mail Classification Using Natural Language Processing

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Thanks to the rapid increase in technology and electronic communications, e-mail has become a serious communication tool. In many applications such as business correspondence, reminders, academic notices, web page memberships, e-mail is used as primary way of communication. If we ignore spam e-mails, there remain hundreds of e-mails received every day. In order to determine the importance of received e-mails, the subject or content of each e-mail must be checked. In this study we proposed an unsupervised system to classify received e-mails. Received e-mails' coordinates are determined by a method of natural language processing called as Word2Vec algorithm. According to the similarities, processed data are grouped by k-means algorithm with an unsupervised training model. In this study, 10517 e-mails were used in training. The success of the system is tested on a test group of 200 e-mails. In the test phase M3 model (window size 3, min. Word frequency 10, Gram skip) consolidated the highest success (91%). Obtained results are evaluated in section VI.

Açıklama

27th Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2019 -- Sivas Cumhuriyet Univ, Sivas, TURKEY

Anahtar Kelimeler

Natural Language Processing, Text Classification, Word2Vec, Skip Gram, K-means

Kaynak

2019 27th Signal Processing and Communications Applications Conference (Siu)

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

Sayı

Künye