An in situ dual-modification strategy for O3-NaNi1/3Fe1/3Mn1/3O2 towards high-performance sodium-ion batteries

dc.authoridALTIN, Serdar/0000-0002-4590-907X;
dc.authorwosidJi, Xiaobo/AFO-0372-2022
dc.authorwosidDeng, Wen-Tao/AAC-4754-2021
dc.authorwosidLi, Jianwei/JQJ-6022-2023
dc.authorwosidHONG, Ningyun/KVY-1007-2024
dc.authorwosidALTIN, Serdar/H-4880-2014
dc.authorwosidHou, Hongshuai/P-2876-2018
dc.contributor.authorHong, Ningyun
dc.contributor.authorLi, Jianwei
dc.contributor.authorGuo, Shihong
dc.contributor.authorHan, Huawei
dc.contributor.authorWang, Haoji
dc.contributor.authorHu, Xinyu
dc.contributor.authorHuang, Jiangnan
dc.date.accessioned2024-08-04T20:54:39Z
dc.date.available2024-08-04T20:54:39Z
dc.date.issued2023
dc.departmentİnönü Üniversitesien_US
dc.description.abstractO3-type NaNi1/3Fe1/3Mn1/3O2 (NFM) is one of the most representative cathode materials with low cost and high capacity advantages. However, the sluggish diffusion kinetics and severe cathode-electrolyte interfacial reaction are serious roadblocks to commercialization. Hereby, a novel method of in situ V-modification is well-designed to play dual roles in reconstructing the crystal lattice and interface structure. Notably, the broadened layer spacing of O-Na-O and shortened TM-O bond are attributed to successful doping of V5+ into the bulk, accelerating the transmission of sodium ions and improving the structure stability. Concomitantly, the construction of a thin surface coating layer is beneficial for mitigating volume expansion and inhibiting structural degradation, which is validated by in situ X-ray diffraction coupled with the synchrotron X-ray absorption spectroscopy. Consequently, the rationally designed V-modified NFM cathode exhibits excellent cycling performances, exhibiting great capacity retention of 75.8% after 500 cycles at 2C in a half cell, and 85.6% capacity retention is observed after 150 cycles at 1C in the full cell. This work provides new insights into the development of O3-type layered oxide cathodes toward long-cycle life applications for large-scale energy storage systems.en_US
dc.description.sponsorshipState Key Program of the National Nature Science of China [61835014]; Major Program of the National Natural Science Foundation of China [51890865]; National Natural Science Foundation of China [52261135632]en_US
dc.description.sponsorshipThis work was financially supported by the State Key Program of the National Nature Science of China (Grant No. 61835014), Major Program of the National Natural Science Foundation of China (Grant No. 51890865) and National Natural Science Foundation of China (52261135632). The authors thank the BL11B stations in the Shanghai Synchrotron Radiation Facility (SSRF) and the U19 station in the National Synchrotron Radiation Laboratory (NSRL) for XAS measurements.en_US
dc.identifier.doi10.1039/d3ta03640e
dc.identifier.endpage18880en_US
dc.identifier.issn2050-7488
dc.identifier.issn2050-7496
dc.identifier.issue35en_US
dc.identifier.scopus2-s2.0-85169511692en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage18872en_US
dc.identifier.urihttps://doi.org/10.1039/d3ta03640e
dc.identifier.urihttps://hdl.handle.net/11616/101553
dc.identifier.volume11en_US
dc.identifier.wosWOS:001051449300001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherRoyal Soc Chemistryen_US
dc.relation.ispartofJournal of Materials Chemistry Aen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectO3-Type Layered Oxideen_US
dc.subjectCathode Materialsen_US
dc.subjectNa-Ionen_US
dc.subjectMechanismen_US
dc.titleAn in situ dual-modification strategy for O3-NaNi1/3Fe1/3Mn1/3O2 towards high-performance sodium-ion batteriesen_US
dc.typeArticleen_US

Dosyalar