Applications of Assoiation Rules Hiding Heuristic Approaches

dc.authoridKarci, Ali/0000-0002-8489-8617
dc.authorwosidKARCI, Ali/A-9604-2019
dc.authorwosidKarci, Ali/AAG-5337-2019
dc.contributor.authorFarea, Afrah
dc.contributor.authorKarci, Ali
dc.date.accessioned2024-08-04T20:41:07Z
dc.date.available2024-08-04T20:41:07Z
dc.date.issued2015
dc.departmentİnönü Üniversitesien_US
dc.description23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEYen_US
dc.description.abstractData Mining allows large database owners to extract useful knowledge that could not be deduced with traditional approaches like statistics. However, these sometimes reveal sensitive knowledge or preach individual privacies. The term sanitization is given to the process of changing original database into another one from which we can mine without exposing sensitive knowledge. In this paper, we give a detailed explanation of some heuristic approaches for this purpose. We applied them on a number of publically available datasets and examine the results.en_US
dc.description.sponsorshipDept Comp Engn & Elect & Elect Engn,Elect & Elect Engn,Bilkent Univen_US
dc.identifier.endpage2653en_US
dc.identifier.isbn978-1-4673-7386-9
dc.identifier.issn2165-0608
dc.identifier.scopus2-s2.0-84939130129en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage2650en_US
dc.identifier.urihttps://hdl.handle.net/11616/96902
dc.identifier.wosWOS:000380500900648en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof2015 23rd Signal Processing and Communications Applications Conference (Siu)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecttransactionen_US
dc.subjectsupporten_US
dc.subjectconfidenceen_US
dc.subjectsanitizationen_US
dc.subjectitemseten_US
dc.subjectfrequent patternen_US
dc.subjectassociation ruleen_US
dc.subjectData Miningen_US
dc.titleApplications of Assoiation Rules Hiding Heuristic Approachesen_US
dc.typeConference Objecten_US

Dosyalar