On the spaces of Cesaro absolutelyp-summable, null, and convergent sequences
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Wiley
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we investigate some properties of the domainsc(0)(C-n),c(C-n), andl(p)(C-n)with0 < p < 1of the Cesaro matrix of ordernin the classical spacesc(0),c, andl(p)of null, convergent, and absolutelyp-summable sequences, respectively, and compute the alpha-,beta-, and gamma-duals of these spaces. We characterize the classes of infinite matrices from the spacel(p)(C-n)to the spacesl(infinity),c, andc(0)and from a normed sequence spaces to the sequence spacesc(0)(C-n),c(C-n), andl(p)(C-n). Moreover, we compute the lower bound of operators froml(p)intol(p)(C-n), froml(p)(C-n)intol(p)and froml(p)(C-n)into itself.
Açıklama
Anahtar Kelimeler
backward difference operator, Cesaro matrix, Hausdorff matrix, Hilbert matrix, matrix operator, sequence space
Kaynak
Mathematical Methods in The Applied Sciences
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
44
Sayı
5