On the spaces of Cesaro absolutelyp-summable, null, and convergent sequences

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we investigate some properties of the domainsc(0)(C-n),c(C-n), andl(p)(C-n)with0 < p < 1of the Cesaro matrix of ordernin the classical spacesc(0),c, andl(p)of null, convergent, and absolutelyp-summable sequences, respectively, and compute the alpha-,beta-, and gamma-duals of these spaces. We characterize the classes of infinite matrices from the spacel(p)(C-n)to the spacesl(infinity),c, andc(0)and from a normed sequence spaces to the sequence spacesc(0)(C-n),c(C-n), andl(p)(C-n). Moreover, we compute the lower bound of operators froml(p)intol(p)(C-n), froml(p)(C-n)intol(p)and froml(p)(C-n)into itself.

Açıklama

Anahtar Kelimeler

backward difference operator, Cesaro matrix, Hausdorff matrix, Hilbert matrix, matrix operator, sequence space

Kaynak

Mathematical Methods in The Applied Sciences

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

44

Sayı

5

Künye