Biharmonic hypersurfaces of LP-Sasakian manifolds
Küçük Resim Yok
Tarih
2011
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Universitatii Al.I.Cuza din Iasi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper the biharmonic hypersurfaces of Lorentzian para-Sasakian manifolds are studied. We firstly find the biharmonic equation for a hypersurface which admits the characteristic vector field of the Lorentzian para-Sasakian as the normal vector field. We show that a biharmonic spacelike hypersurface of a Lorentzian para-Sasakian manifold with constant mean curvature is minimal. The biharmonicity condition for a hypersurface of a Lorentzian para-Sasakian manifold is investigated when the characteristic vector field belongs to the tangent hyperplane of the hypersurface. We find some necessary and sufficient conditions for a timelike hypersurface of a Lorentzian para-Sasakian manifold to be proper biharmonic. The nonexistence of proper biharmonic timelike hypersurfaces with constant mean curvature in a Ricci flat Lorentzian para-Sasakian manifold is proved.
Açıklama
Anahtar Kelimeler
Biharmonic hypersurfaces, Biharmonic maps, Lorentzian para-Sasakian manifolds
Kaynak
Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica
WoS Q Değeri
Scopus Q Değeri
Q4
Cilt
57
Sayı
2