Biharmonic hypersurfaces of LP-Sasakian manifolds

Küçük Resim Yok

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Universitatii Al.I.Cuza din Iasi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper the biharmonic hypersurfaces of Lorentzian para-Sasakian manifolds are studied. We firstly find the biharmonic equation for a hypersurface which admits the characteristic vector field of the Lorentzian para-Sasakian as the normal vector field. We show that a biharmonic spacelike hypersurface of a Lorentzian para-Sasakian manifold with constant mean curvature is minimal. The biharmonicity condition for a hypersurface of a Lorentzian para-Sasakian manifold is investigated when the characteristic vector field belongs to the tangent hyperplane of the hypersurface. We find some necessary and sufficient conditions for a timelike hypersurface of a Lorentzian para-Sasakian manifold to be proper biharmonic. The nonexistence of proper biharmonic timelike hypersurfaces with constant mean curvature in a Ricci flat Lorentzian para-Sasakian manifold is proved.

Açıklama

Anahtar Kelimeler

Biharmonic hypersurfaces, Biharmonic maps, Lorentzian para-Sasakian manifolds

Kaynak

Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica

WoS Q Değeri

Scopus Q Değeri

Q4

Cilt

57

Sayı

2

Künye