A numerical solution of Burgers' equation

dc.authoridOzdes, Ali/0000-0001-5677-8354;
dc.authorwosidAksan, Emine Nesligül/AAA-4222-2021
dc.authorwosidOzdes, Ali/AAA-3152-2021
dc.authorwosidÖZDEŞ, Ali/ABG-9932-2020
dc.contributor.authorAksan, EN
dc.contributor.authorÖzdes, A
dc.date.accessioned2024-08-04T20:30:41Z
dc.date.available2024-08-04T20:30:41Z
dc.date.issued2004
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn this paper, the Burgers' equation which is one-dimensional quasi-linear parabolic partial differential equation was solved by a variational method constructed on the method of discretization in time. The numerical results obtained by these ways for various values of viscosity have been compared with the exact solution. It was seen that they were in good agreement with each other. (C) 2003 Elsevier Inc. All rights reserved.en_US
dc.identifier.doi10.1016/j.amc.2003.07.027
dc.identifier.endpage402en_US
dc.identifier.issn0096-3003
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-3943070338en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage395en_US
dc.identifier.urihttps://doi.org/10.1016/j.amc.2003.07.027
dc.identifier.urihttps://hdl.handle.net/11616/94457
dc.identifier.volume156en_US
dc.identifier.wosWOS:000224009100010en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBurgers' equationen_US
dc.subjectthe method of discretization in timeen_US
dc.subjectthe Galerkin methoden_US
dc.titleA numerical solution of Burgers' equationen_US
dc.typeArticleen_US

Dosyalar