Spiking Neural Network Applications

dc.authoridTalu, Muhammed Fatih/0000-0003-1166-8404
dc.authorwosidTalu, Muhammed Fatih/W-2834-2017
dc.contributor.authorCelik, Gaffari
dc.contributor.authorTalu, M. Fatih
dc.date.accessioned2024-08-04T20:44:10Z
dc.date.available2024-08-04T20:44:10Z
dc.date.issued2017
dc.departmentİnönü Üniversitesien_US
dc.description2017 International Artificial Intelligence and Data Processing Symposium (IDAP) -- SEP 16-17, 2017 -- Malatya, TURKEYen_US
dc.description.abstractSpiking Neural Network (SNN) are 3rd Generation Artificial Neural Networks (ANN) models. The fact that time information is processed in the form of spikes and there are multiple synapses between cells (neurons) are the most important features that distinguish SNN from previous generations. In this study, artificial learning systems which can learn by using basic logical operators such as AND, OR, XOR have been developed in order to understand SNN structure. In SNN, we tried to find optimal values for these parameters by examining the effect of the number of connections between cells and delays between connections to learning success.en_US
dc.description.sponsorshipIEEE Turkey Sect,Anatolian Scien_US
dc.identifier.isbn978-1-5386-1880-6
dc.identifier.scopus2-s2.0-85039901955en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11616/98080
dc.identifier.wosWOS:000426868700106en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.publisherIeeeen_US
dc.relation.ispartof2017 International Artificial Intelligence and Data Processing Symposium (Idap)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectSpiking Neural Networken_US
dc.subjectDelay Timeen_US
dc.subjectSynapsesen_US
dc.subjectBackPropagationen_US
dc.subjectPopulation Codingen_US
dc.subjectGaussian Receptive Fieldsen_US
dc.titleSpiking Neural Network Applicationsen_US
dc.typeConference Objecten_US

Dosyalar