Examination of the effect of the basic parameters of the auto-encoder on coding performance
dc.authorid | Talu, Muhammed Fatih/0000-0003-1166-8404 | |
dc.authorid | Calisan, Mucahit/0000-0003-2651-5937 | |
dc.authorwosid | Talu, Muhammed Fatih/W-2834-2017 | |
dc.contributor.author | Calisan, Mucahit | |
dc.contributor.author | Talu, M. Fatih | |
dc.date.accessioned | 2024-08-04T20:44:12Z | |
dc.date.available | 2024-08-04T20:44:12Z | |
dc.date.issued | 2017 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description | 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) -- SEP 16-17, 2017 -- Malatya, TURKEY | en_US |
dc.description.abstract | In this study, artificial learning approach which can express high dimensional data in a lower space (autocoding) and known as autoencoder in the literature has been investigated in detail without using a predefined ready mathematical model. The most important feature of this method, which can be used in place of traditional feature extraction methods (HOG, SHIFT, SURF, Wavelet, etc.), is the ability to extract data-specific features. By applying the real (MNIST) and synthetic data, the effects on the success of the parameters of the method are measured and the results are presented in a tabular form. | en_US |
dc.description.sponsorship | IEEE Turkey Sect,Anatolian Sci | en_US |
dc.identifier.isbn | 978-1-5386-1880-6 | |
dc.identifier.scopus | 2-s2.0-85039920699 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://hdl.handle.net/11616/98095 | |
dc.identifier.wos | WOS:000426868700110 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2017 International Artificial Intelligence and Data Processing Symposium (Idap) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Deep learning | en_US |
dc.subject | autoencoder | en_US |
dc.subject | feature extraction | en_US |
dc.subject | feature selection | en_US |
dc.subject | data reduction | en_US |
dc.subject | dimension reduction | en_US |
dc.title | Examination of the effect of the basic parameters of the auto-encoder on coding performance | en_US |
dc.type | Conference Object | en_US |