Evaluating geo-environmental variables using a clustering based areal model
dc.authorid | Kaymak, Uzay/0000-0002-4500-9098 | |
dc.authorid | TERCAN, A.ERHAN/0000-0002-0393-4656 | |
dc.authorid | Tutmez, Bulent/0000-0002-2618-3285 | |
dc.authorid | Lloyd, Christopher/0000-0003-0575-7793 | |
dc.authorwosid | Tutmez, Bulent/ABG-8630-2020 | |
dc.authorwosid | Kaymak, Uzay/A-3364-2008 | |
dc.authorwosid | TERCAN, A.ERHAN/G-5921-2013 | |
dc.contributor.author | Tutmez, Bulent | |
dc.contributor.author | Kaymak, Uzay | |
dc.contributor.author | Tercan, A. Erhan | |
dc.contributor.author | Lloyd, Christopher D. | |
dc.date.accessioned | 2024-08-04T20:35:50Z | |
dc.date.available | 2024-08-04T20:35:50Z | |
dc.date.issued | 2012 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | Global regression models do not accurately reflect the spatial heterogeneity which characterises most geo-environmental variables. In analysing the relationships between such variables, an approach is required which allows the model parameters to vary spatially. This paper proposes a new framework for exploring local relationships between geo-environmental variables. The method is based on extended objective function based fuzzy clustering with the environmental parameters estimated through on a locally weighted regression analysis. The case studies and prediction evaluations show that the fuzzy algorithm yields well-fitted models and accurate predictions. In addition to an increased accuracy of prediction relative to the widely-used geographically weighted regression (GWR), the proposed algorithm provides the search radius (bandwidth) and weights for local estimation directly from the data. The results suggest that the method could be employed effectively in tackling real world kernel-based modelling problems. (C) 2012 Elsevier Ltd. All rights reserved. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) [108M393]; COST (European Cooperation in Science and Technology) Action [IC0702] | en_US |
dc.description.sponsorship | This research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project: 108M393) and COST (European Cooperation in Science and Technology) Action IC0702. | en_US |
dc.identifier.doi | 10.1016/j.cageo.2012.02.019 | |
dc.identifier.endpage | 41 | en_US |
dc.identifier.issn | 0098-3004 | |
dc.identifier.issn | 1873-7803 | |
dc.identifier.scopus | 2-s2.0-84859412306 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 34 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.cageo.2012.02.019 | |
dc.identifier.uri | https://hdl.handle.net/11616/95609 | |
dc.identifier.volume | 43 | en_US |
dc.identifier.wos | WOS:000305202500005 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Computers & Geosciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Spatial relationship | en_US |
dc.subject | GWR | en_US |
dc.subject | Fuzzy clustering | en_US |
dc.subject | Local analysis | en_US |
dc.subject | Geo-environmental | en_US |
dc.title | Evaluating geo-environmental variables using a clustering based areal model | en_US |
dc.type | Article | en_US |