AI-driven design for the compressive strength of ultra-high performance geopolymer concrete (UHPGC): From explainable ensemble models to the graphical user interface

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Ultra-high performance geopolymer concrete (UHPGC) has become of interest in recent years as a more economical and sustainable alternative while offering similar mechanical performance to ordinary ultra-high performance concrete (UHPC). The lack of an effective mix design methodology has inhibited the widespread use of UHPGC, despite its potential. This paper adopted an artificial intelligence (AI)-based approach to accurately model the compressive strength (CS) of UHPGC, a critical parameter to ensure structural integrity and reliability. Ensemble machine learning (ML) models such as RF, XGBoost, LightGBM and AdaBoost, which have been very popular lately, were selected as AI algorithms. For the establishment of these models, a comprehensive and reliable dataset of 181 test results was used, including 13 input features. Additionally, feature importance and Shapley additive explanations (SHAP) analyses were used to ensure the explainability of the prediction models and tackle the “black box” challenge of ML models. The results obtained revealed that all ensemble models successfully predicted the CS of UHPGC; in particular, the XGBoost model consistently exhibited the best overall performance in terms of higher R2 (0.948) and lower RMSE (6.68), MAE (4.73), MAPE (4 %), and mean error value (1.095), in the test phase. Moreover, feature importance and SHAP analyses revealed that the most influential features on the CS of UHPGC were age, fiber and silica fume, sodium silicate (Na2SiO3), and water content. Lastly, a graphical user interface (GUI) was developed to easily predict the CS of UHPGC in practical applications. © 2024 Elsevier Ltd

Açıklama

Anahtar Kelimeler

Compressive strength, Graphical user interface, Machine learning, Shapley additive explanations, Ultra-high performance geopolymer concrete

Kaynak

Materials Today Communications

WoS Q Değeri

Scopus Q Değeri

Q2

Cilt

40

Sayı

Künye