LAD, LASSO and Related Strategies in Regression Models
dc.authorid | Arashi, Mohammad/0000-0002-5881-9241 | |
dc.authorid | Norouzirad, Mina/0000-0003-0311-6888 | |
dc.authorid | Yuzbasi, Bahadir/0000-0002-6196-3201 | |
dc.authorid | Arashi, Mohammad/0000-0002-5881-9241; | |
dc.authorwosid | Arashi, Mohammad/ABD-3395-2020 | |
dc.authorwosid | Norouzirad, Mina/A-1886-2019 | |
dc.authorwosid | Yuzbasi, Bahadir/F-6907-2013 | |
dc.authorwosid | Arashi, Mohammad/AAO-4453-2021 | |
dc.authorwosid | Ahmed, Syed/GSN-7305-2022 | |
dc.contributor.author | Yuzbasi, Bahadir | |
dc.contributor.author | Ahmed, Syed Ejaz | |
dc.contributor.author | Arashi, Mohammad | |
dc.contributor.author | Norouzirad, Mina | |
dc.date.accessioned | 2024-08-04T20:46:01Z | |
dc.date.available | 2024-08-04T20:46:01Z | |
dc.date.issued | 2020 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description | 13th International Conference on Management Science and Engineering Management (ICMSEM) -- AUG 05-08, 2019 -- Brock Univ, St. Catharines, CANADA | en_US |
dc.description.abstract | In the context of linear regression models, it is well-known that the ordinary least squares estimator is very sensitive to outliers whereas the least absolute deviations (LAD) is an alternative method to estimate the known regression coefficients. Selecting significant variables is very important; however, by choosing these variables some information may be sacrificed. To prevent this, in our proposal, we can combine the full model estimates toward the candidate sub-model, resulting in improved estimators in risk sense. In this article, we consider shrinkage estimators in a sparse linear regression model and study their relative asymptotic properties. Advantages of the proposed estimators over the usual LAD estimator are demonstrated through a Monte Carlo simulation as well as a real data example. | en_US |
dc.description.sponsorship | Int Soc Management Sci & Engn Management,Sichuan Univ | en_US |
dc.description.sponsorship | National Research Foundation of South Africa [IFR170227223754, 109214]; Natural Sciences and the Engineering Research Council of Canada (NSERC) | en_US |
dc.description.sponsorship | We would like to thank anonymous reviewers for constructive comments which significantly improved the presentation of the paper. M. Arashi's research is supported in part by the National Research Foundation of South Africa (ref. IFR170227223754 grant number 109214). Prof. S. Ejaz Ahmed is supported by the Natural Sciences and the Engineering Research Council of Canada (NSERC). | en_US |
dc.identifier.doi | 10.1007/978-3-030-21248-3_32 | |
dc.identifier.endpage | 444 | en_US |
dc.identifier.isbn | 978-3-030-21248-3 | |
dc.identifier.isbn | 978-3-030-21247-6 | |
dc.identifier.issn | 2194-5357 | |
dc.identifier.issn | 2194-5365 | |
dc.identifier.scopus | 2-s2.0-85068203410 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 429 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-21248-3_32 | |
dc.identifier.uri | https://hdl.handle.net/11616/98849 | |
dc.identifier.volume | 1001 | en_US |
dc.identifier.wos | WOS:000587663000032 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer International Publishing Ag | en_US |
dc.relation.ispartof | Proceedings of The Thirteenth International Conference on Management Science and Engineering Management, Vol 1 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | LAD estimator | en_US |
dc.subject | LAD-LASSO estimator | en_US |
dc.subject | Outliers | en_US |
dc.subject | Soft and hard thresh-holdings | en_US |
dc.title | LAD, LASSO and Related Strategies in Regression Models | en_US |
dc.type | Conference Object | en_US |