Nanostructured Platinum and Platinum Alloy-Based Resistive Hydrogen Sensors: A Review †

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Multidisciplinary Digital Publishing Institute (MDPI)

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

As a future energy source, hydrogen is used in many industrial applications, such as chemicals, semiconductors, transportation, etc. Hydrogen gas, which has many unusual properties compared to other gases, has the risk of being flammable and explosive when it is present in the atmosphere at concentrations of 4% and higher. We need hydrogen sensors both to determine the risks in advance and because we do not want hydrogen gas, which is a source of energy, to be lost due to leakage. Hydrogen sensors are used in hydrogen production plants to determine hydrogen purity, for leakage and safety in all areas where hydrogen gas is used, and also in the medical field, as hydrogen gas is a marker in disease diagnosis. In the context of classifying hydrogen sensors according to their physicochemical sensing mechanisms, resistive metallic hydrogen sensors stand out as a prevalent choice, with Pd, Pt, and their alloy counterparts being commonly employed as designated sensing materials. In this study, nanostructured platinum (Pt) and Pt alloy-based resistive hydrogen sensors are reviewed and discussed in detail. The sensing mechanism of Pt-based resistive hydrogen sensors has been explained by the scattering of charge carriers at the surface, coupled with its defects and grain boundaries, and by the formation of hydride (PtHx) phenomena, depending on the increase or decrease in resistance in the hydrogen environment. © 2023 by the authors.

Açıklama

Anahtar Kelimeler

alloy, hydrogen sensor, nanoporous, nanowire, platinum, resistive sensor, thin film

Kaynak

Engineering Proceedings

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

48

Sayı

1

Künye