Effect of distance between impeller blade tip and surface on mass transfer to a local electrode in a stirred vessel in a wide range of Sc number
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Taylor & Francis Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Stirred vessels are encountered in a wide scale of applications from bench to industrial processes, and the knowledge of the heat/mass transfer rates in these vessels is required for their design, operation and control. This work submits an investigation on the mass transfer to a small circular surface immersed in a stirred vessel in the parameter ranges of 267 < Re <9437, 1473 < Sc <61,422, and 0.022 < x/d(k) < 0.22 for the distance between the impeller blade tip and the transfer surface. The Reynolds number was based on the impeller diameter. The electrochemical limiting diffusion current technique having a potassium ferri-/ferrocyanide system was applied for mass transfer coefficient measurements. Aqueous glycerine solutions were prepared to attain a wide range of Sc numbers. The rate of mass transfer is enhanced with increasing rotation rate, decreasing blade tip-to-electrode surface distance, and decreasing glycerine concentration. The experimental data were well correlated by the relation Sh = 8.517Re(0.473)Sc(0)(.402)(x/d(k))(-0.042). [GRAPHICS] .
Açıklama
Anahtar Kelimeler
electrochemical limiting current technique, convective transfer, mass transfer, stirred vessel
Kaynak
Indian Chemical Engineer
WoS Q Değeri
N/A
Scopus Q Değeri
Q3
Cilt
64
Sayı
5