Synthesis of 1,3-Disubtitituted Tetrahydropyrimidinium Salts and Determination of Their Biological Properties and Molecular Docking
dc.authorid | Demir, Yeliz/0000-0003-3216-1098 | |
dc.authorid | Gulcin, ilhami/0000-0001-5993-1668 | |
dc.authorwosid | Demir, Yeliz/ABI-5719-2020 | |
dc.authorwosid | OZDEMIR, ISMAIL/KVY-3420-2024 | |
dc.authorwosid | Gulcin, ilhami/F-1428-2014 | |
dc.contributor.author | Karaca, Emine Ozge | |
dc.contributor.author | Gurbuz, Nevin | |
dc.contributor.author | Demir, Yeliz | |
dc.contributor.author | Tuzun, Burak | |
dc.contributor.author | Ozdemir, Ismail | |
dc.contributor.author | Gulcin, Ilhami | |
dc.date.accessioned | 2024-08-04T20:56:03Z | |
dc.date.available | 2024-08-04T20:56:03Z | |
dc.date.issued | 2024 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | Several of 3,4,5,6-tetrahydropyrimidinium salts with 1-methyl functionalization are produced. By using techniques for 1H-NMR, 13C-NMR, and IR spectroscopy, all compounds were investigated. Additionally, these compounds' abilities to block enzymes were looked into. They had a highly effective inhibitory effect on the isoenzymes of carbonic anhydrases I and II, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE). Ki values were found in the range of 57.43 +/- 7.09-170.09 +/- 50.91 nM for AChE, 7.19 +/- 0.42-69.08 +/- 2.44 nM for BChE, and 46.48 +/- 5.74-203.38 +/- 46.15 nM for hCA I, and 30.19 +/- 4.03-171.96 +/- 30.27 nM for hCA II. As a result, 1,3-disubtitituted tetrahydroprimidinium salts exhibited potent inhibition profiles toward indicated metabolic enzymes. One of the most important methods for designing and creating novel, potent medications to treat Alzheimer's disease (AD) worldwide is the synthesis and discovery of new AChE and BChE inhibitors. The activities of synthesized 3,4,5,6-tetrahydropyrimidinium salts were compared against various proteins that are crystal structure of AChE (PDB ID: 4 M0E), crystal structure of BChE (PDB ID: 5NN0), crystal structure of hCA I (PDB ID: 2CAB), and crystal structure of hCA II (PDB ID: 3DC3), and then the drug properties of these molecules were examined. In this study, we have designed and synthesized a series of 1,3-disubtitituted tetrahydropyrimidinium salts were synthesized and characterized by IR and NMR spectra. These compounds were evaluated against the AChE, BChE, hCA I and hCA II enzymes. These compounds showed good enzyme inhibition profiles. The activities of the investigated 1,3-disubstituted tetrahydropyrimidinium salts were compared to the theoretical calculations results using molecular docking. image | en_US |
dc.description.sponsorship | Inonu University Research Fund; Scientific Research Project Fund of Sivas Cumhuriyet University (CUBAP) [IUE-BAP:FBG-2021-2562]; [RGD-020] | en_US |
dc.description.sponsorship | This study was supported by Inonu University Research Fund (IUE-BAP:FBG-2021-2562) and by the Scientific Research Project Fund of Sivas Cumhuriyet University (CUBAP) under the project number RGD-020. | en_US |
dc.identifier.doi | 10.1002/slct.202304440 | |
dc.identifier.issn | 2365-6549 | |
dc.identifier.issue | 19 | en_US |
dc.identifier.scopus | 2-s2.0-85193268082 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1002/slct.202304440 | |
dc.identifier.uri | https://hdl.handle.net/11616/102002 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:001223511100001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley-V C H Verlag Gmbh | en_US |
dc.relation.ispartof | Chemistryselect | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Enzyme inhibition | en_US |
dc.subject | Tetrahydroprimidinium salts | en_US |
dc.subject | Carbonic anhydrase | en_US |
dc.subject | Butyrylcholinesterase | en_US |
dc.subject | and Acetylcholinesterase | en_US |
dc.title | Synthesis of 1,3-Disubtitituted Tetrahydropyrimidinium Salts and Determination of Their Biological Properties and Molecular Docking | en_US |
dc.type | Article | en_US |