Topological Quasilinear Spaces

dc.authoridÇAKAN, Sümeyye/0000-0001-8761-8564
dc.authorwosidYilmaz, Yilmaz/A-9582-2018
dc.authorwosidÇAKAN, Sümeyye/ABH-4275-2020
dc.contributor.authorYilmaz, Yilmaz
dc.contributor.authorCakan, Sumeyye
dc.contributor.authorAytekin, Sahika
dc.date.accessioned2024-08-04T20:36:10Z
dc.date.available2024-08-04T20:36:10Z
dc.date.issued2012
dc.departmentİnönü Üniversitesien_US
dc.description.abstractWe introduce, in this work, the notion of topological quasilinear spaces as a generalization of the notion of normed quasilinear spaces defined by Aseev (1986). He introduced a kind of the concept of a quasilinear spaces both including a classical linear spaces and also nonlinear spaces of subsets and multivalued mappings. Further, Aseev presented some basic quasilinear counterpart of linear functional analysis by introducing the notions of norm and bounded quasilinear operators and functionals. Our investigations show that translation may destroy the property of being a neighborhood of a set in topological quasilinear spaces in contrast to the situation in topological vector spaces. Thus, we prove that any topological quasilinear space may not satisfy the localization principle of topological vector spaces.en_US
dc.identifier.doi10.1155/2012/951374
dc.identifier.issn1085-3375
dc.identifier.scopus2-s2.0-84867026884en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.urihttps://doi.org/10.1155/2012/951374
dc.identifier.urihttps://hdl.handle.net/11616/95813
dc.identifier.wosWOS:000308493100001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherHindawi Publishing Corporationen_US
dc.relation.ispartofAbstract and Applied Analysisen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConvex-Bodiesen_US
dc.titleTopological Quasilinear Spacesen_US
dc.typeArticleen_US

Dosyalar