Local spatial regression models: a comparative analysis on soil contamination
dc.authorid | Kaymak, Uzay/0000-0002-4500-9098 | |
dc.authorid | TERCAN, A.ERHAN/0000-0002-0393-4656 | |
dc.authorid | Tutmez, Bulent/0000-0002-2618-3285 | |
dc.authorwosid | Kaymak, Uzay/A-3364-2008 | |
dc.authorwosid | Tutmez, Bulent/ABG-8630-2020 | |
dc.authorwosid | TERCAN, A.ERHAN/G-5921-2013 | |
dc.contributor.author | Tutmez, Bulent | |
dc.contributor.author | Kaymak, Uzay | |
dc.contributor.author | Tercan, A. Erhan | |
dc.date.accessioned | 2024-08-04T20:36:10Z | |
dc.date.available | 2024-08-04T20:36:10Z | |
dc.date.issued | 2012 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | Spatial data analysis focuses on both attribute and locational information. Local analyses deal with differences across space whereas global analyses deal with similarities across space. This paper addresses an experimental comparative study to analyse the spatial data by some weighted local regression models. Five local regression models have been developed and their estimation capacities have been evaluated. The experimental studies showed that integration of objective function based fuzzy clustering to geostatistics provides some accurate and general models structures. In particular, the estimation performance of the model established by combining the extended fuzzy clustering algorithm and standard regional dependence function is higher than that of the other regression models. Finally, it could be suggested that the hybrid regression models developed by combining soft computing and geostatistics could be used in spatial data analysis. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) [108M393]; COST (European Cooperation in Science and Technology) Action [IC0702] | en_US |
dc.description.sponsorship | This research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project: 108M393) and COST (European Cooperation in Science and Technology) Action IC0702. | en_US |
dc.identifier.doi | 10.1007/s00477-011-0532-2 | |
dc.identifier.endpage | 1023 | en_US |
dc.identifier.issn | 1436-3240 | |
dc.identifier.issn | 1436-3259 | |
dc.identifier.issue | 7 | en_US |
dc.identifier.scopus | 2-s2.0-84866459953 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 1013 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00477-011-0532-2 | |
dc.identifier.uri | https://hdl.handle.net/11616/95803 | |
dc.identifier.volume | 26 | en_US |
dc.identifier.wos | WOS:000308812500010 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Stochastic Environmental Research and Risk Assessment | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Local regression modelling | en_US |
dc.subject | GWR | en_US |
dc.subject | Fuzzy clustering | en_US |
dc.subject | Regional dependence function | en_US |
dc.title | Local spatial regression models: a comparative analysis on soil contamination | en_US |
dc.type | Article | en_US |