3 Boyutlu Evrişimsel Sinir Ağı Kullanılarak Hiperspektral Görüntülerin Sınıflandırılması
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Hiperspektral görüntü sınıflandırma, uzaktan algılanan görüntülerin analizi için yaygın olarak kullanılmaktadır. Bir hiperspektral görüntü, uygulamalarda büyük potansiyele sahip olan yer nesnelerinin zengin spektral bilgilerini ve uzamsal bilgilerini içermektedir. Spektral uzamsal bilgi kullanımı hiperspektral görüntü sınıflandırmasının performansını önemli ölçüde arttırmaktadır. Hiperspektral görüntüler, 3B küpler biçiminde gösterilmektedir. Bu nedenle, 3B uzamsal filtreleme, bu tür görüntülerdeki spektral uzamsal özellikleri eşzamanlı olarak çıkarmak için doğal olarak basit ve etkili bir yöntem sunmaktadır. Bu çalışmada, hiperspektral görüntü sınıflandırması için bir 3B evrişimli sinir ağı (3B ESA) yöntemi önerilmiştir. Önerilen yöntem, derin spektral uzamsal birleştirilmiş özellikleri etkin bir şekilde çıkarmaktadır. Aynı zamanda herhangi bir ön işleme veya son işleme dayanmadan hiperspektral görüntü küpü verileri toplu olarak görüntülemektedir. Hiperspektral görüntü küpü önce küçük üst üste binen 3B parçalara bölünmektedir. Daha sonra bu parçalar, spektral bilgileri de koruyan birden çok bitişik bant üzerinde bir 3B çekirdek işlevi kullanarak 3B özellik haritaları oluşturmak için işlenmektedir. Önerilen yöntem indian pines, pavia üniversitesi ve botswana veri setleri ile test edilmiştir. Deneysel çalışmalar sonucunda, indian pines için %99,35, pavia üniversitesi için %99,90 ve botswana için ise %99,59 genel doğruluk sonuçları elde edilmiştir. Sonuçlar, 4 farklı derin öğrenme tabanlı yöntemle karşılaştırılmıştır. Deneysel sonuçlardan, önerilen 3B ESA yöntemimizin daha iyi performans gösterdiği görülmektedir.
Açıklama
Anahtar Kelimeler
Kaynak
Türk Doğa ve Fen Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
11
Sayı
1