L1 Correlation-Based Penalty in High-Dimensional Quantile Regression
dc.authorid | Yuzbasi, Bahadir/0000-0002-6196-3201 | |
dc.authorid | Asar, Yasin/0000-0003-1109-8456; | |
dc.authorwosid | Yuzbasi, Bahadir/F-6907-2013 | |
dc.authorwosid | Asar, Yasin/V-5701-2017 | |
dc.authorwosid | Ahmed, Syed/GSN-7305-2022 | |
dc.contributor.author | Yuzbasi, Bahadir | |
dc.contributor.author | Ahmed, S. Ejaz | |
dc.contributor.author | Asar, Yasin | |
dc.date.accessioned | 2024-08-04T20:45:50Z | |
dc.date.available | 2024-08-04T20:45:50Z | |
dc.date.issued | 2018 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description | 4th International Conference on Big Data and Information Analytics (BigDIA) -- DEC 17-19, 2018 -- HOUSTON, TX | en_US |
dc.description.abstract | In this study, we propose a new method called L1 norm correlation based estimation in quantile regression in high-dimensional sparse models where the number of explanatory variables is large, may be larger than the number of observations, however, only some small subset of the predictive variables are important in explaining the dependent variable. Therefore, the importance of new method is that it addresses both grouping affect and variable selection. Monte Carlo simulations confirm that the new method compares well to the other existing regularization methods. | en_US |
dc.description.sponsorship | IEEE,Gulf Coast Consortia,Univ Texas Hlth Sci Ctr Houston, Dept biostatistics & Data Sci, Sch Public Hlth | en_US |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada | en_US |
dc.description.sponsorship | The research of Professor S. Ejaz Ahmed was partially supported by the Natural Sciences and Engineering Research Council of Canada. | en_US |
dc.identifier.isbn | 978-1-5386-6888-7 | |
dc.identifier.scopus | 2-s2.0-85062852607 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://hdl.handle.net/11616/98723 | |
dc.identifier.wos | WOS:000458645000002 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2018 4th International Conference on Big Data and Information Analytics (Bigdia) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Variable Selection | en_US |
dc.subject | Lasso Regression | en_US |
dc.subject | Correlation Based Penalty | en_US |
dc.subject | Quantile Regression | en_US |
dc.title | L1 Correlation-Based Penalty in High-Dimensional Quantile Regression | en_US |
dc.type | Conference Object | en_US |