Detecting of Circular Knitting Fabric Defects Using VGG16 Architecture
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Although the conventional image processing methods can detect fabric defects, fabric defect detection is an open research problem due to the diversity of defect types. In this paper, the feasibility of VGG16 deep learning architecture for fabric defect detection has been demonstrated. A new fabric defect database is used. The pre-trained model of VGG16 architecture on the new database is built. Thus, the training time of the model is reduced. The experimental results show that the VGG16 model outperforms the traditional Shearlet transform and GLCM methods.
Açıklama
Anahtar Kelimeler
Kaynak
Türk Doğa ve Fen Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
11
Sayı
2











