An Evolutionary Field Theorem: Evolutionary Field Optimization in Training of Power-Weighted Multiplicative Neurons for Nitrogen Oxides-Sensitive Electronic Nose Applications
dc.authorid | Alimohammadi, Hossein/0000-0002-8867-8988 | |
dc.authorid | Vassiljeva, Kristina/0000-0002-4178-1267 | |
dc.authorid | Ari, Davut/0000-0001-6439-7957 | |
dc.authorid | Alagoz, Baris Baykant/0000-0001-5238-6433 | |
dc.authorid | Tepljakov, Aleksei/0000-0002-7158-8484 | |
dc.authorid | IMIK SIMSEK, OZLEM/0000-0002-4192-0255 | |
dc.authorid | Petlenkov, Eduard/0000-0003-2167-6280 | |
dc.authorwosid | Alimohammadi, Hossein/AAX-5165-2020 | |
dc.authorwosid | Vassiljeva, Kristina/AAC-8226-2021 | |
dc.authorwosid | Ari, Davut/GPX-1182-2022 | |
dc.authorwosid | Alagoz, Baris Baykant/ABG-8526-2020 | |
dc.authorwosid | Tepljakov, Aleksei/F-1632-2017 | |
dc.authorwosid | Petlenkov, Eduard/G-5537-2017 | |
dc.contributor.author | Alagoz, Baris Baykant | |
dc.contributor.author | Simsek, Ozlem Imik | |
dc.contributor.author | Ari, Davut | |
dc.contributor.author | Tepljakov, Aleksei | |
dc.contributor.author | Petlenkov, Eduard | |
dc.contributor.author | Alimohammadi, Hossein | |
dc.date.accessioned | 2024-08-04T20:51:57Z | |
dc.date.available | 2024-08-04T20:51:57Z | |
dc.date.issued | 2022 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | Neuroevolutionary machine learning is an emerging topic in the evolutionary computation field and enables practical modeling solutions for data-driven engineering applications. Contributions of this study to the neuroevolutionary machine learning area are twofold: firstly, this study presents an evolutionary field theorem of search agents and suggests an algorithm for Evolutionary Field Optimization with Geometric Strategies (EFO-GS) on the basis of the evolutionary field theorem. The proposed EFO-GS algorithm benefits from a field-adapted differential crossover mechanism, a field-aware metamutation process to improve the evolutionary search quality. Secondly, the multiplicative neuron model is modified to develop Power-Weighted Multiplicative (PWM) neural models. The modified PWM neuron model involves the power-weighted multiplicative units similar to dendritic branches of biological neurons, and this neuron model can better represent polynomial nonlinearity and they can operate in the real-valued neuron mode, complex-valued neuron mode, and the mixed-mode. In this study, the EFO-GS algorithm is used for the training of the PWM neuron models to perform an efficient neuroevolutionary computation. Authors implement the proposed PWM neural processing with the EFO-GS in an electronic nose application to accurately estimate Nitrogen Oxides (NOx) pollutant concentrations from low-cost multi-sensor array measurements and demonstrate improvements in estimation performance. | en_US |
dc.description.sponsorship | Estonian Research Council [PRG658] | en_US |
dc.description.sponsorship | This work was partially supported by the Estonian Research Council under Grant PRG658. | en_US |
dc.identifier.doi | 10.3390/s22103836 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.issue | 10 | en_US |
dc.identifier.pmid | 35632245 | en_US |
dc.identifier.scopus | 2-s2.0-85130267279 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.3390/s22103836 | |
dc.identifier.uri | https://hdl.handle.net/11616/100657 | |
dc.identifier.volume | 22 | en_US |
dc.identifier.wos | WOS:000801755200001 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.ispartof | Sensors | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | neuroevolution | en_US |
dc.subject | evolutionary optimization | en_US |
dc.subject | multiplicative neuron model | en_US |
dc.subject | concentration estimation | en_US |
dc.subject | electronic nose | en_US |
dc.subject | Industry 4 | en_US |
dc.subject | 0 | en_US |
dc.title | An Evolutionary Field Theorem: Evolutionary Field Optimization in Training of Power-Weighted Multiplicative Neurons for Nitrogen Oxides-Sensitive Electronic Nose Applications | en_US |
dc.type | Article | en_US |