Design of Robust PI Controllers for Interval Plants With Worst-Case Gain and Phase Margin Specifications in Presence of Multiple Crossover Frequencies

dc.authoridAlagoz, Baris Baykant/0000-0001-5238-6433
dc.authoridPekar, Libor/0000-0002-2401-5886
dc.authoridSENOL, Bilal/0000-0002-3734-8807
dc.authorwosidMatuš?, Radek/H-6355-2012
dc.authorwosidAlagoz, Baris Baykant/ABG-8526-2020
dc.authorwosidMatuš?, Radek/HPH-8692-2023
dc.authorwosidPekar, Libor/H-6373-2012
dc.authorwosidSENOL, Bilal/Y-5328-2018
dc.contributor.authorMatusu, Radek
dc.contributor.authorSenol, Bilal
dc.contributor.authorAlagoz, Baris Baykant
dc.contributor.authorPekar, Libor
dc.date.accessioned2024-08-04T20:52:08Z
dc.date.available2024-08-04T20:52:08Z
dc.date.issued2022
dc.departmentİnönü Üniversitesien_US
dc.description.abstractThis article deals with the computation of robustly performing Proportional-Integral (PI) controllers for interval plants, where the performance measures are represented by the worst-case Gain Margin (GM) and Phase Margin (PM) specifications, in the event of multiple Phase Crossover Frequencies (PCFs) and/or Gain Crossover Frequencies (GCFs). The multiplicity of PCFs and GCFs poses a considerable complication in frequency-domain control design methods. The paper is a continuation of the authors' previous work that applied the robust PI controller design approach to a Continuous Stirred Tank Reactor (CSTR). This preceding application represented the system with a single PCF and a single GCF, but the current article focuses on a case of multiple PCFs and GCFs. The determination of a robust performance region in the P-I plane is based on the stability/performance boundary locus method and the sixteen plant theorem. In the illustrative example, a robust performance region is obtained for an experimental oblique wing aircraft that is mathematically modeled as the unstable interval plant. The direct application of the method results in the (pseudo-)GM and (pseudo-)PM regions that illogically protrude from the stability region. Consequently, a deeper analysis of the selected points in the P-I plane shows that the calculated GM and PM boundary loci are related to the numerically correct values, but that the results may be misleading, especially for the loci outside the stability region, due to the multiplicity of the PCFs and GCFs. Nevertheless, the example eventually shows that the important parts of the GM and PM regions, i.e., the parts that have an impact on the final robust performance region, are valid. Thus, the method is applicable even to unstable interval plants and to the control loops with multiple PCFs and GCFs.en_US
dc.identifier.doi10.1109/ACCESS.2022.3186330
dc.identifier.endpage67726en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85133811581en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage67713en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2022.3186330
dc.identifier.urihttps://hdl.handle.net/11616/100773
dc.identifier.volume10en_US
dc.identifier.wosWOS:000819814900001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIeee-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Accessen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPI controlen_US
dc.subjectControl systemsen_US
dc.subjectUncertaintyen_US
dc.subjectMathematical modelsen_US
dc.subjectThermal stabilityen_US
dc.subjectFeedback controlen_US
dc.subjectAircraften_US
dc.subjectGain marginen_US
dc.subjectinterval planten_US
dc.subjectmultiple crossover frequenciesen_US
dc.subjectoblique wing aircraften_US
dc.subjectphase marginen_US
dc.subjectPI controllersen_US
dc.subjectrobust controlen_US
dc.subjectrobust performanceen_US
dc.titleDesign of Robust PI Controllers for Interval Plants With Worst-Case Gain and Phase Margin Specifications in Presence of Multiple Crossover Frequenciesen_US
dc.typeArticleen_US

Dosyalar