An efficient Strang splitting technique combined with the multiquadric-radial basis function for the Burgers' equation
dc.authorid | UÇAR, Yusuf/0000-0003-1469-5002 | |
dc.authorid | SEYDAOGLU, MUAZ/0000-0003-3211-0864 | |
dc.authorwosid | seydaoğlu, muaz/ABF-4604-2021 | |
dc.authorwosid | UÇAR, Yusuf/ABG-8562-2020 | |
dc.contributor.author | Seydaoglu, Muaz | |
dc.contributor.author | Ucar, Yusuf | |
dc.contributor.author | Kutluay, Selcuk | |
dc.date.accessioned | 2024-08-04T20:50:52Z | |
dc.date.available | 2024-08-04T20:50:52Z | |
dc.date.issued | 2021 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | In the present paper, two effective numerical schemes depending on a second-order Strang splitting technique are presented to obtain approximate solutions of the one-dimensional Burgers' equation utilizing the collocation technique and approximating directly the solution by multiquadric-radial basis function (MQ-RBF) method. To show the performance of both schemes, we have considered two examples of Burgers' equation. The obtained numerical results are compared with the available exact values and also those of other publishedmethods. Moreover, the computed L-2 and L-infinity error norms have been given. It is found that the presented schemes produce better results as compared to those obtained almost all the schemes present in the literature. | en_US |
dc.identifier.doi | 10.1007/s40314-021-01692-3 | |
dc.identifier.issn | 2238-3603 | |
dc.identifier.issn | 1807-0302 | |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopus | 2-s2.0-85119429785 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s40314-021-01692-3 | |
dc.identifier.uri | https://hdl.handle.net/11616/100317 | |
dc.identifier.volume | 40 | en_US |
dc.identifier.wos | WOS:000720423900001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Heidelberg | en_US |
dc.relation.ispartof | Computational & Applied Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Burgers' equation | en_US |
dc.subject | Strang splitting | en_US |
dc.subject | Multiquadric-radial basis function | en_US |
dc.title | An efficient Strang splitting technique combined with the multiquadric-radial basis function for the Burgers' equation | en_US |
dc.type | Article | en_US |