Enhancing high sensitive hydrogen detection of Bi2O3 nanoparticle decorated TiO2 nanotubes

dc.authoridTASYUREK, LUTFI BILAL/0000-0003-0607-648X
dc.authoridIsik, Esme/0000-0002-6179-5746
dc.authoridKILINC, Necmettin/0000-0003-2123-2938
dc.authorwosidTASYUREK, LUTFI BILAL/ABC-1644-2020
dc.authorwosidIsik, Esme/AAG-5927-2019
dc.authorwosidTosun, Emir/S-5125-2018
dc.authorwosidKILINC, Necmettin/AAT-9845-2020
dc.contributor.authorIsik, Esme
dc.contributor.authorTasyurek, Lutfi Bilal
dc.contributor.authorTosun, Emir
dc.contributor.authorKilinc, Necmettin
dc.date.accessioned2024-08-04T20:54:46Z
dc.date.available2024-08-04T20:54:46Z
dc.date.issued2024
dc.departmentİnönü Üniversitesien_US
dc.description.abstractAn electrochemical anodization technique was used to create a hydrogen gas sensor based on TiO2 nanotubes decorated with bismuth oxide (Bi2O3). Bismuth nitrate pentahydrate (Bi(NO3)3 center dot 5H2O) was employed as the source material for Bi2O3. The resulting nanotubes were annealed at 500 degrees C, revealing an amorphous structure with a mixed phase of rutile and anatase. Platinum (Pt) electrodes, with a thickness of 100 nm, were coated onto the Bi2O3@TiO2/Ti and TiO2/Ti structures for sensor testing. Energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM) were used to examine the structural, morphological, and surface properties of the Bi2O3@TiO2 and TiO2 nanotubes. The hydrogen sensing properties of the Pt/Bi2O3@TiO2/Ti and Pt/TiO2/Ti devices were evaluated at room temperature, with hydrogen concentrations ranging from 1000 ppm to 10 %. The I-V characterization of the sensor devices under 1 % H2 exhibited typical Schottky-type behavior. Remarkably, the Pt/Bi2O3@TiO2/Ti structure demonstrated a sensor response 1 x 107 times higher than that of in a dry air environment when the same voltage was applied under up to 1 % H2 conditions. The uniform dispersion of Bi2O3 nanoparticles throughout the structure contributed to the enhanced sensor response in the presence of H2.en_US
dc.description.sponsorshipMalatya Turgut Ozal University Scientific Research Unit of Turkey (BAP) [2022/06]en_US
dc.description.sponsorshipThis study was funded by Malatya Turgut Ozal University Scientific Research Unit of Turkey (BAP, Project Number: 2022/06) .en_US
dc.identifier.doi10.1016/j.matchemphys.2023.128535
dc.identifier.issn0254-0584
dc.identifier.issn1879-3312
dc.identifier.scopus2-s2.0-85173904740en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.matchemphys.2023.128535
dc.identifier.urihttps://hdl.handle.net/11616/101619
dc.identifier.volume311en_US
dc.identifier.wosWOS:001098601400001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Saen_US
dc.relation.ispartofMaterials Chemistry and Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTitanium dioxideen_US
dc.subjectNanotubesen_US
dc.subjectBismuth oxideen_US
dc.subjectDecorationen_US
dc.subjectp -n heterostructureen_US
dc.subjectHydrogen sensoren_US
dc.subjectAnodizationen_US
dc.titleEnhancing high sensitive hydrogen detection of Bi2O3 nanoparticle decorated TiO2 nanotubesen_US
dc.typeArticleen_US

Dosyalar