Behavioural modelling of delayed imbalance dynamics in nature: a parametric modelling for simulation of delayed instability dynamics

dc.authoridAlagoz, Baris Baykant/0000-0001-5238-6433
dc.authoridKoseoglu, Murat/0000-0003-3774-1083
dc.authoridDeniz, Furkan Nur/0000-0002-2524-7152
dc.authorwosidAlagoz, Baris Baykant/ABG-8526-2020
dc.authorwosidKoseoglu, Murat/ABG-8975-2020
dc.authorwosidDeniz, Furkan Nur/ABB-9604-2020
dc.contributor.authorAlagoz, Baris Baykant
dc.contributor.authorDeniz, Furkan Nur
dc.contributor.authorKoseoglu, Murat
dc.date.accessioned2024-08-04T20:51:39Z
dc.date.available2024-08-04T20:51:39Z
dc.date.issued2022
dc.departmentİnönü Üniversitesien_US
dc.description.abstractImbalance dynamics can develop very slowly, and real systems and structures may seem to be stable or balanced for long periods of time before signs of instability behaviour become apparent. This study presents two dynamic system modelling approaches for simulation of delayed instability: Firstly, frequency domain properties of the system instability are investigated, and a parametric model to represent delayed instability behaviour is formulated according to the system pole placement technique. Secondly, a new type of instability modelling approach, which is based on time-domain characteristics of fractional order derivative operators, is introduced by utilizing the finite convergence regions of the Binomial series. This special instability modelling technique essentially uses the region of convergence in the series expansion of impulse responses. Several illustrative modelling and simulation examples are illustrated for engineering problems such as slowly developing cracks in metals, the voltage collapse in power systems and the delayed instability in control systems.en_US
dc.identifier.doi10.1080/03081079.2022.2025795
dc.identifier.endpage333en_US
dc.identifier.issn0308-1079
dc.identifier.issn1563-5104
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85124348046en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage313en_US
dc.identifier.urihttps://doi.org/10.1080/03081079.2022.2025795
dc.identifier.urihttps://hdl.handle.net/11616/100472
dc.identifier.volume51en_US
dc.identifier.wosWOS:000751756400001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofInternational Journal of General Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDelayed instabilityen_US
dc.subjectdelayed imbalanceen_US
dc.subjectdelayed collapseen_US
dc.subjectdynamic system modellingen_US
dc.subjectBinomial expansionen_US
dc.subjectfractional order systemen_US
dc.titleBehavioural modelling of delayed imbalance dynamics in nature: a parametric modelling for simulation of delayed instability dynamicsen_US
dc.typeArticleen_US

Dosyalar