Hurwitz stability analysis of fractional order LTI systems according to principal characteristic equations

dc.authoridAlagoz, Baris Baykant/0000-0001-5238-6433
dc.authorwosidAlagoz, Baris Baykant/ABG-8526-2020
dc.contributor.authorAlagoz, Buis Baykant
dc.date.accessioned2024-08-04T20:43:12Z
dc.date.available2024-08-04T20:43:12Z
dc.date.issued2017
dc.departmentİnönü Üniversitesien_US
dc.description.abstractWith power mapping (conformal mapping), stability analyses of fractional order linear time invariant (LTI) systems are carried out by consideration of the root locus of expanded degree integer order polynomials in the principal Riemann sheet. However, it is essential to show the left half plane (LHP) stability analysis of fractional order characteristic polynomials in the s plane in order to close the gap emerging in stability analyses of fractional order and integer order systems. In this study, after briefly discussing the relation between the characteristic root orientations and the system stability, the author presents a methodology to establish principal characteristic polynomials to perform the LHP stability analysis of fractional order systems. The principal characteristic polynomials are formed by factorizing principal characteristic roots. Then, the LHP stability analysis of fractional order systems can be carried out by using the root equivalency of fractional order principal characteristic polynomials. Illustrative examples are presented to explain how to find equivalent roots of fractional order principal characteristic polynomials in order to carry out the LHP stability analyses of fractional order nominal and interval systems. (C) 2017 ISA. Published by Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.isatra.2017.06.005
dc.identifier.endpage15en_US
dc.identifier.issn0019-0578
dc.identifier.issn1879-2022
dc.identifier.pmid28606708en_US
dc.identifier.scopus2-s2.0-85020398386en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage7en_US
dc.identifier.urihttps://doi.org/10.1016/j.isatra.2017.06.005
dc.identifier.urihttps://hdl.handle.net/11616/97850
dc.identifier.volume70en_US
dc.identifier.wosWOS:000411296800002en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofIsa Transactionsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional order systemsen_US
dc.subjectHurwitz stabilityen_US
dc.subjectConformal mappingen_US
dc.subjectLeft half plane stability analysisen_US
dc.subjectRobust stabilityen_US
dc.titleHurwitz stability analysis of fractional order LTI systems according to principal characteristic equationsen_US
dc.typeArticleen_US

Dosyalar