On Some Topological and Geometric Properties of Some q-Cesaro Sequence Spaces

dc.authoridAkdemir, Ahmet Ocak/0000-0003-2466-0508
dc.authorwosidAkdemir, Ahmet Ocak/Q-2400-2019
dc.contributor.authorYilmaz, Yilmaz
dc.contributor.authorAkdemir, Ahmet Ocak
dc.date.accessioned2024-08-04T20:53:41Z
dc.date.available2024-08-04T20:53:41Z
dc.date.issued2023
dc.departmentİnönü Üniversitesien_US
dc.description.abstractMathematical concepts are aesthetic tools that are useful to create methods or solutions to real-world problems in theory and practice, and that sometimes contain symmetrical and asymmetrical structures due to the nature of the problems. In this study, we investigate whether the sequence spaces X-q(p), 0= p<8, and X8, which are constructed by q-Cesaro matrix, satisfy some of the further properties described with respect to the bounded linear operators on them. More specifically, we answer to the question: Which of these spaces have the Approximation, Dunford-Pettis, Radon-Riesz and Hahn-Banach extension properties?. Furthermore, we try to investigate some geometric properties such as rotundity and smootness of these spaces.en_US
dc.identifier.doi10.3390/sym15040791
dc.identifier.issn2073-8994
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85156148809en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.3390/sym15040791
dc.identifier.urihttps://hdl.handle.net/11616/101331
dc.identifier.volume15en_US
dc.identifier.wosWOS:000981102900001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.ispartofSymmetry-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCesaro matrixen_US
dc.subjectsequence spacesen_US
dc.subjectHahn-Banach operatoren_US
dc.titleOn Some Topological and Geometric Properties of Some q-Cesaro Sequence Spacesen_US
dc.typeArticleen_US

Dosyalar