Derin Sinir Ağları için Hiperparametre Metodlarının ve Kitlerinin İncelenmesi

dc.contributor.authorAltun, Sara
dc.contributor.authorTalu, Muhammed Fatih
dc.date.accessioned2022-12-06T08:33:05Z
dc.date.available2022-12-06T08:33:05Z
dc.date.issued2021
dc.departmentİnönü Üniversitesien_US
dc.description.abstractOtomatik makine öğrenimi (AutoML) ve derin sinir ağları birçok hiperparametreye sahiptir. Karmaşık ve hesapsal maliyet olarak pahalı makine öğrenme modellerine son zamanlarda ilginin artması, hiperparametre optimizasyonu (HPO) araştırmalarının yeniden canlanmasına neden olmuştur. HPO’nun başlangıcı epey uzun yıllara dayanmaktadır ve derin öğrenme ağları ile popülaritesi artmıştır. Bu makale, HPO ile ilgili en önemli konuların gözden geçirilmesini sağlamaktadır. İlk olarak model eğitimi ve yapısı ile ilgili temel hiperparametreler tanıtılmakta ve değer aralığı için önemleri ve yöntemleri tartışılmaktadır. Sonrasında, özellikle derin öğrenme ağları için etkinliklerini ve doğruluklarını kapsayan optimizasyon algoritmalarına ve uygulanabilirliklerine odaklanılmaktadır. Aynı zamanda bu çalışmada HPO için önemli olan ve araştırmacılar tarafından tercih edilen HPO kitlerini incelenmiştir. İncelenen HPO kitlerinin en gelişmiş arama algoritmaları, büyük derin öğrenme araçları ile fizibilite ve kullanıcılar tarafından tasarlanan yeni modüller için genişletilebilme durumlarını karşılaştırmaktadır. HPO derin öğrenme algoritmalarına uygulandığında ortaya çıkan problemler, optimizasyon algoritmaları arasında bir karşılaştırma ve sınırlı hesaplama kaynaklarına sahip model değerlendirmesi için öne çıkan yaklaşımlarla sonuçlanmaktadır.en_US
dc.description.abstractAutomatic machine learning (AutoML) and deep neural networks have many hyperparameters. The recent increasing interest in complex and cost-effective machine learning models has led to the revival of hyperparameter optimization (HPO) research. The beginning of HPO has been around for many years and its popularity has increased with deep learning networks. This article provides important issues related to the revision of the HPO. First, basic hyperparameters related to the training and structure of the model are introduced and their importance and methods for the value range are discussed. Then, it focuses on optimization algorithms and their applicability, especially for deep learning networks, covering their effectiveness and accuracy. Then, it focuses on optimization algorithms and their applicability, especially for deep learning networks, covering their effectiveness and accuracy. At the same time, this study examined the HPO kits that are important for HPO and are preferred by researchers. The most advanced search algorithms of the analyzed HPO kits compare the feasibility and expandability for new modules designed by users with large deep learning tools. Problems that arise when HPO is applied to deep learning algorithms result in prominent approaches for model evaluation with a comparison between optimization algorithms and limited computational resources.en_US
dc.identifier.citationALTUN S, TALU M (2021). Derin Sinir Ağları için Hiperparametre Metodlarının ve Kitlerinin İncelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(2), 187 - 200. 10.24012/dumf.767700en_US
dc.identifier.doi10.24012/dumf.767700en_US
dc.identifier.endpage200en_US
dc.identifier.issn1309-8640
dc.identifier.issn2146-4391
dc.identifier.issue2en_US
dc.identifier.startpage187en_US
dc.identifier.trdizinid479822en_US
dc.identifier.urihttps://doi.org/10.24012/dumf.767700
dc.identifier.urihttps://hdl.handle.net/11616/85625
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/479822
dc.identifier.volume12en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isotren_US
dc.relation.ispartofDicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisien_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleDerin Sinir Ağları için Hiperparametre Metodlarının ve Kitlerinin İncelenmesien_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
document - 2022-12-06T113236.326.pdf
Boyut:
709.25 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: