Generalized Wijsman rough Weierstrass statistical six dimensional triple geometric difference sequence spaces of fractional order defined by Musielak-Orlicz function of interval numbers
dc.authorscopusid | 36816540800 | |
dc.authorscopusid | 55927576700 | |
dc.authorscopusid | 15754098100 | |
dc.contributor.author | Subramanian N. | |
dc.contributor.author | Esi A. | |
dc.contributor.author | Ozdemir M.K. | |
dc.date.accessioned | 2024-08-04T20:02:25Z | |
dc.date.available | 2024-08-04T20:02:25Z | |
dc.date.issued | 2019 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | We generalized the concepts in probability of Wijsman rough lacunary statistical by introducing the interval numbers of Weierstrass of fractional order, where ? is a proper fraction and ? = (?mnk) is any fixed sequence of nonzero real or complex numbers. We study some properties of this operator involving Wijsman rough lacunary sequence ? of interval numbers and arbitrary sequence p = (prst) of strictly positive real numbers and investigate the topological structures of related six dimensional triple geometric difference sequence spaces of interval numbers. In this study, we consider a generalization for Weierstrass rough six dimensional triple geometric difference sequence of these metric spaces by taking a ? function, satisfying the following conditions. Let ?m,n,k be a positive function for all m, n, k ? N such that (i) lim m,n,k?? ?mnk = 0, (ii) ?3?mnk = ?mnk - ?m,n+1,k - ?m,n,k+1 + ?m,n+1,k+1 - ?m+1,n,k + ?m+1,n+1,k + ?m+1,n,k+1 - ?m+1,n+1,k+1 ? 0: or ?mnk = 1. Therefore, according to class of functions which satisfying the conditions (i) and (ii) with metric spaces of six dimensional triple geometric difference sequence spaces of interval numbers defined by a Musielak-Orlicz function. © Balkan Society of Geometers, Geometry Balkan Press 2019. | en_US |
dc.identifier.endpage | 252 | en_US |
dc.identifier.issn | 1454-5101 | |
dc.identifier.scopus | 2-s2.0-85072796092 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 236 | en_US |
dc.identifier.uri | https://hdl.handle.net/11616/91657 | |
dc.identifier.volume | 21 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Balkan Society of Geometers | en_US |
dc.relation.ispartof | Applied Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Analytic sequence | en_US |
dc.subject | Chi sequence | en_US |
dc.subject | Geometric difference | en_US |
dc.subject | Interval numbers | en_US |
dc.subject | Musielak-Orlicz function | en_US |
dc.subject | Six dimensional matrix lacunary statistical convergence | en_US |
dc.subject | Triple sequences | en_US |
dc.subject | Weierstrass gamma function | en_US |
dc.subject | Wijsman rough convergence | en_US |
dc.title | Generalized Wijsman rough Weierstrass statistical six dimensional triple geometric difference sequence spaces of fractional order defined by Musielak-Orlicz function of interval numbers | en_US |
dc.type | Article | en_US |