Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient L-asparaginase immobilization

dc.authoridAteş, Burhan/0000-0001-6080-229X
dc.authoridTarhan, Tuba/0000-0003-2656-4464
dc.authoridUlu, Ahmet/0000-0002-4447-6233
dc.authorwosidAteş, Burhan/AAA-3730-2021
dc.authorwosidTarhan, Tuba/ABD-4278-2021
dc.authorwosidSarıçam, PhD, Melike/IQV-0017-2023
dc.authorwosidUlu, Ahmet/L-5180-2016
dc.contributor.authorTarhan, Tuba
dc.contributor.authorUlu, Ahmet
dc.contributor.authorSaricam, Melike
dc.contributor.authorCulha, Mustafa
dc.contributor.authorAtes, Burhan
dc.date.accessioned2024-08-04T20:46:57Z
dc.date.available2024-08-04T20:46:57Z
dc.date.issued2020
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn this study, maltose-functionalized magnetic core/shell nanoparticles (Fe3O4@Au NPs) as a promising carrier matrix for a simple and effective immobilization of L-asparaginase (L-ASNase) were prepared and characterized using imaging techniques including atomic force microscopy (AFM) and transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The results indicate that the NPs are monodispersed with an average diameter of 10 nm and magnetization of 9.0 emu g(-1). Under the optimal conditions, 77.2 +/- 2.3% of the total L-ASNase was immobilized. It was found that the acid-base tolerance and thermal stability of immobilized L-ASNase were significantly improved in comparison to the free form of the enzyme in solution. For instance, while only 10% of the immobilized enzyme was lost its activity, the free form was lost its activity more than 50% after 3 h incubation at 55 degrees C. After 13 times recycling, the immobilized L-ASNase retained about 50% of its initial activity. Moreover, the free and immobilized L-ASNase maintained their initial activities about 25 and 64% after 28 days storage at 25 degrees C, respectively. Km value of immobilized L-ASNase decreased to 1.59 from 2.95 mM as an indication of increased enzyme affinity for the substrate. The results of this study suggest that the maltose-coated magnetic nanoparticles are excellent nanovehicles to carry enzymes for a range of industrial applications. (C) 2019 Elsevier B.V. All rights reserved.en_US
dc.identifier.doi10.1016/j.ijbiomac.2019.09.116
dc.identifier.endpage451en_US
dc.identifier.issn0141-8130
dc.identifier.issn1879-0003
dc.identifier.pmid31593716en_US
dc.identifier.scopus2-s2.0-85075416403en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage443en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijbiomac.2019.09.116
dc.identifier.urihttps://hdl.handle.net/11616/99067
dc.identifier.volume142en_US
dc.identifier.wosWOS:000510955500042en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofInternational Journal of Biological Macromoleculesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMagnetic core/shell nanoparticlesen_US
dc.subjectL-Asparaginaseen_US
dc.subjectImmobilizationen_US
dc.subjectMaltoseen_US
dc.titleMaltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient L-asparaginase immobilizationen_US
dc.typeArticleen_US

Dosyalar