Preparation, characterization of upconverting nanoparticles for uricase immobilization and controlled manipulation of uricase activity by near-infrared light

dc.contributor.authorDik, Gamze
dc.contributor.authorNoma, Samir Abbas Ali
dc.contributor.authorUlu, Ahmet
dc.contributor.authorTopel, Seda Demirel
dc.contributor.authorAsiltuerk, Meltem
dc.contributor.authorAtes, Burhan
dc.date.accessioned2024-08-04T20:55:55Z
dc.date.available2024-08-04T20:55:55Z
dc.date.issued2024
dc.departmentİnönü Üniversitesien_US
dc.description.abstractIn recent years, studies on the external stimulation of biotechnological enzyme drugs and their use in the treatment of diseases have gradually increased. Herein, for the first time, the near-infrared (NIR) was used as an external stimulant to manipulate the catalytic activity of the uricase (UOx) enzyme, which is used in the treatment of hyperuricemia, in a controlled manner. For this purpose, NaYF4: Yb3+, Er3+ upconverting nanoparticles (UCNPs) were synthesized by hydrothermal synthesis method and functionalized with diethylaminoethyldextran (DEAE-D) to facilitate UOx immobilization. The obtained materials were characterized in detail by various methods to confirm the preparation of UCNPs and immobilization of UOx. In addition, the biochemical parameters such as optimum pH, optimum temperature, thermal stability, and reusability were preliminarily investigated for free UOx and NaYF4: Yb3+, Er3+/DEAE-D/UOx. Moreover, a sequential experimental method was monitored to assess the effects of NIR excitation intensity, induction distance, and exposure time on the UOx activity. While the optimum pH value was found to be 6.0 for both enzyme forms, the optimum temperature value was recorded as 45 and 50 degrees C for free UOx and NaYF4: Yb3+, Er3+/DEAE-D/UOx, respectively. The activation energy (Ea) values of free UOx and NaYF4: Yb3+, Er3+/DEAE-D/UOx were calculated to be 7.59 and 2.98 kJ/mol, respectively, implying that the NaYF4: Yb3+, Er3+/DEAE-D/UOx was less temperature sensitive. After thermal incubation for 3 h at 55 degrees C, the NaYF4: Yb3+, Er3+/DEAE-D/UOx retained 54.68 % of its initial activity, while the free UOx retained 32.94 % of its initial activity at 50 degrees C. In addition, the findings from the reusability experiments revealed that NaYF4:Yb3+, Er3+/DEAE-D/UOx retained 57.94 % of its initial activity even after 10 reuse cycles. The most striking point in this study was the positive manipulation of UOx activity by NIR. Accordingly, it was observed that when the NIR power was 1500 mW, the UOx activity increased about 2 times compared to the control. Additionally, the UOx activity increased in parallel with the increase in NIR application time and the ideal application distance was 3 cm. In conclusion, this pioneering study provides valuable insights into the controlled manipulation of enzyme activity, showcasing the effectiveness of NIR in enhancing enzyme activity. The outcomes suggest that NIR holds great promise as an efficient, sustainable, and versatile approach applicable to various enzymatic catalysis scenarios.en_US
dc.description.sponsorshipScientific Research Projects Unit of.Inonu University [FBG-2020-2173]en_US
dc.description.sponsorshipThe authors would like to thank the Scientific Research Projects Unit of.Inonu University (FBG-2020-2173).en_US
dc.identifier.doi10.1016/j.jlumin.2024.120617
dc.identifier.issn0022-2313
dc.identifier.issn1872-7883
dc.identifier.scopus2-s2.0-85190256689en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1016/j.jlumin.2024.120617
dc.identifier.urihttps://hdl.handle.net/11616/101931
dc.identifier.volume271en_US
dc.identifier.wosWOS:001230352000001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Luminescenceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectUpconverting nanoparticlesen_US
dc.subjectUricaseen_US
dc.subjectEnzyme immobilizationen_US
dc.subjectEnhanced activityen_US
dc.subjectNear-infrared lighten_US
dc.titlePreparation, characterization of upconverting nanoparticles for uricase immobilization and controlled manipulation of uricase activity by near-infrared lighten_US
dc.typeArticleen_US

Dosyalar