Thermally Induced Spin State Transition in LiCoO2 and Its Effects on Battery Performance

dc.authoridDemirel, Serkan/0000-0003-1158-4956
dc.authoridALTIN, Serdar/0000-0002-4590-907X
dc.authoridSahinbay, Sevda/0000-0002-5482-4772
dc.authoridAltin, Emine/0000-0002-2187-4036
dc.authoridOz, Erdinc/0000-0003-4321-8264
dc.authorwosidALTIN, EMINE/AHE-9774-2022
dc.authorwosidDemirel, Serkan/AAA-2133-2020
dc.authorwosidSahinbay, Sevda/Q-7698-2018
dc.authorwosidALTIN, Serdar/H-4880-2014
dc.authorwosidbayri, ali/AAA-5966-2021
dc.authorwosidOz, Erdinc/GXW-0937-2022
dc.contributor.authorOz, Erdinc
dc.contributor.authorDemirel, Serkan
dc.contributor.authorAltin, Serdar
dc.contributor.authorAltin, Emine
dc.contributor.authorBayri, Ali
dc.contributor.authorAvci, Sevda
dc.date.accessioned2024-08-04T20:43:56Z
dc.date.available2024-08-04T20:43:56Z
dc.date.issued2017
dc.departmentİnönü Üniversitesien_US
dc.description.abstractLiCoO2 is the most widely used and extensively studied cathode material for Li-ion batteries. The studies based on the improvement of the performance have focused on the structural and electrochemical properties of LiCoO2. However, significantly less attention has been paid to its magnetic properties and their effects on battery performance. For the first time to our knowledge, we report a thermally induced magnetic spin state transition from low spin (LS) to intermediate spin (IS) at similar to 800 K in bulk LiCoO2 via magnetic susceptibility measurements. We quench the LiCoO2 from above the spin state transition temperature (similar to 810 K) into liquid nitrogen to preserve the IS state at room temperature. We use this quenched sample (q-LiCoO2) as an active cathode material. We observe a significant improvement (similar to 15% better capacity retention after 200 cycles at 1C) in cell performance of q-LiCoO2 compared to the ref-LiCoO2 which is used as a reference material. Our results show that it is possible to tailor the magnetic properties and electronic structure of cathode materials to achieve better battery performance. (C) 2017 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [112M487]en_US
dc.description.sponsorshipThis research was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract number 112M487.en_US
dc.identifier.doi10.1016/j.electacta.2017.07.147
dc.identifier.endpage453en_US
dc.identifier.issn0013-4686
dc.identifier.issn1873-3859
dc.identifier.scopus2-s2.0-85026728171en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage449en_US
dc.identifier.urihttps://doi.org/10.1016/j.electacta.2017.07.147
dc.identifier.urihttps://hdl.handle.net/11616/97912
dc.identifier.volume248en_US
dc.identifier.wosWOS:000409525300049en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofElectrochimica Actaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLiCoO2en_US
dc.subjectcathode materialsen_US
dc.subjectspin state transitionen_US
dc.titleThermally Induced Spin State Transition in LiCoO2 and Its Effects on Battery Performanceen_US
dc.typeArticleen_US

Dosyalar