Exploring the Impact of Lanthanum on Sodium Manganese Oxide Cathodes: Insight into Electrochemical Performance

dc.authorscopusid57204930872
dc.authorscopusid57210202764
dc.authorscopusid57205399830
dc.authorscopusid58570711200
dc.authorscopusid6602509891
dc.authorscopusid23767083500
dc.authorscopusid22933352000
dc.contributor.authorWhba R.
dc.contributor.authorAltundag S.
dc.contributor.authorAydin M.G.
dc.contributor.authorKalyoncuoglu B.
dc.contributor.authorOzgul M.
dc.contributor.authorDepci T.
dc.contributor.authorAltin S.
dc.date.accessioned2024-08-04T20:03:38Z
dc.date.available2024-08-04T20:03:38Z
dc.date.issued2024
dc.departmentİnönü Üniversitesien_US
dc.description.abstractThis investigation focuses on nominally La-doped Na0.67MnO2, exploring its structural, electrochemical, and battery characteristics for Na-ion batteries. X-ray diffraction analysis reveals formation of composite materials containing three distinct phases: P2-Na0.67MnO2, NaMn8O16, and LaMnO3. The bond structures of the powders undergo scrutiny through Fourier-transform infrared and Raman analyses, revealing dependencies on the NaO, MnO, and LaO structures. X-ray photoelectron spectroscopy and energy-dispersive X-ray dot mapping analyses show that the La ions are unevenly dispersed within the samples, exhibiting a valence state of 3+. Half-cell tests unveil similarities in redox peaks between the cyclic voltammetry analysis of La-doped samples and P2-type Na0.67MnO2, with a reduction in peak intensities as La content increases. Electrochemical impedance spectroscopy model analysis indicates direct influences of La content on the half-cell's resistive elements values. The synergistic effect of composite material with multiple phases yields promising battery performances for both half and full cells. The highest initial capacity value of 208.7 mAh g?1, with a 57% capacity fade, among others, is observed, and it diminishes with increasing La content. Full cells are constructed using an electrochemically presodiated hard carbon anode, yielding a promising capacity value of 184.5 mAh g?1 for sodium-ion battery studies. © 2024 Wiley-VCH GmbH.en_US
dc.description.sponsorshipFBG?2023?3272en_US
dc.description.sponsorshipThe authors would like to thank Inonu University Research Council under grant FBG\u20102023\u20103272 for funding the scholar project.en_US
dc.identifier.doi10.1002/ente.202400824
dc.identifier.issn2194-4288
dc.identifier.scopus2-s2.0-85199390275en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1002/ente.202400824
dc.identifier.urihttps://hdl.handle.net/11616/91951
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.relation.ispartofEnergy Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcathodeen_US
dc.subjectcomposite materialsen_US
dc.subjectlanthanum-doped electrochemical performancesen_US
dc.subjectsodium manganese oxideen_US
dc.titleExploring the Impact of Lanthanum on Sodium Manganese Oxide Cathodes: Insight into Electrochemical Performanceen_US
dc.typeArticleen_US

Dosyalar