Matrix transformations on the matrix domains of triangles in the spaces of strongly C1-summable and bounded sequences

dc.authoridALTAY, BİLAL/0000-0002-2400-7122
dc.authorwosidBaşar, Feyzi/X-4419-2019
dc.authorwosidALTAY, BİLAL/ABG-9578-2020
dc.contributor.authorBasar, Feyzi
dc.contributor.authorMalkowsky, Eberhard
dc.contributor.authorAltay, Bilal
dc.date.accessioned2024-08-04T20:30:57Z
dc.date.available2024-08-04T20:30:57Z
dc.date.issued2008
dc.departmentİnönü Üniversitesien_US
dc.description.abstractLet w(0)(p), w(p) and w(infinity)(p) be the sets of sequences that are strongly summable to zero, summable and bounded of index p >= 1 by the Cesaro method of order 1, which were introduced by Maddox [I. J. MADDOX, On Kuttner's theorem, J. London Math. Soc. 43 (1968), 285-290]. We study the matrix domains w(0)(p)(T) = (W-0(p))(T), w(p)(T) = (W-p)T and w(infinity)(p) (T) = (W-infinity(p))T of arbitrary triangles T in w(0)(p),w(p) and w(infinity)(p), determine their beta-duals, and characterize matrix transformations on them into the spaces c(0), c and l(infinity).en_US
dc.identifier.endpage213en_US
dc.identifier.issn0033-3883
dc.identifier.issue1-2en_US
dc.identifier.scopus2-s2.0-50049093975en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage193en_US
dc.identifier.urihttps://hdl.handle.net/11616/94631
dc.identifier.volume73en_US
dc.identifier.wosWOS:000257458400013en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherKossuth Lajos Tudomanyegyetemen_US
dc.relation.ispartofPublicationes Mathematicae-Debrecenen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmatrix domain in a sequence spaceen_US
dc.subjectbeta-dualsen_US
dc.subjectmatrix transformationsen_US
dc.titleMatrix transformations on the matrix domains of triangles in the spaces of strongly C1-summable and bounded sequencesen_US
dc.typeArticleen_US

Dosyalar