Real-Time Detection of Knitting Fabric Defects Using Shearlet Transform
dc.authorid | Hanbay, Kazım/0000-0003-1374-1417 | |
dc.authorid | Öztürk, Dursun/0000-0002-0335-8118 | |
dc.authorid | Talu, Muhammed Fatih/0000-0003-1166-8404 | |
dc.authorwosid | Hanbay, Kazım/J-3848-2014 | |
dc.authorwosid | Öztürk, Dursun/A-5053-2018 | |
dc.authorwosid | Özgüven, ÖmerülFaruk/ABH-1035-2020 | |
dc.authorwosid | Talu, Muhammed Fatih/W-2834-2017 | |
dc.contributor.author | Hanbay, Kazim | |
dc.contributor.author | Talu, Muhammed Fatih | |
dc.contributor.author | Ozguven, Omer Faruk | |
dc.contributor.author | Ozturk, Dursun | |
dc.date.accessioned | 2024-08-04T20:45:52Z | |
dc.date.available | 2024-08-04T20:45:52Z | |
dc.date.issued | 2019 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | This paper proposes a vision-based fabric inspection system for the circular knitting machine. Firstly, a comprehensive fabric database called Fabric Defect Detection Database (FDDD) are constructed. To extract significant features of fabric images, shearlet transform is used. Means and variances are calculated from all subbands and combined into a high-dimensional feature vector. The proposed system is evaluated on a circular knitting machine in a textile factory. The real-time performance analysis is only carried out by inspecting single jersey knitted fabric. Our proposed system achieves the highest accuracy of 94.0% in the detection of single jersey knitting fabric defects. | en_US |
dc.description.sponsorship | Ministry of Science, Industry and Technology, Turkey [0127.STZ.2013-1] | en_US |
dc.description.sponsorship | This work was supported by the Ministry of Science, Industry and Technology, Turkey (0127.STZ.2013-1). | en_US |
dc.identifier.doi | 10.32710/tekstilvekonfeksiyon.448737 | |
dc.identifier.endpage | 10 | en_US |
dc.identifier.issn | 1300-3356 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85063950487 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 3 | en_US |
dc.identifier.uri | https://doi.org/10.32710/tekstilvekonfeksiyon.448737 | |
dc.identifier.uri | https://hdl.handle.net/11616/98750 | |
dc.identifier.volume | 29 | en_US |
dc.identifier.wos | WOS:000485289300001 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ege Univ | en_US |
dc.relation.ispartof | Tekstil Ve Konfeksiyon | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fabric defect detection | en_US |
dc.subject | real-time inspection | en_US |
dc.subject | texture classification | en_US |
dc.title | Real-Time Detection of Knitting Fabric Defects Using Shearlet Transform | en_US |
dc.type | Article | en_US |